Data driven respiratory gating outperforms device-based gating for Clinical FDG PET/CT

A data-driven method for respiratory gating in PET has recently been commercially developed. We sought to compare the performance of the algorithm to an external, device-based system for oncological [18F]-FDG PET/CT imaging. Methods: 144 whole-body [18F]-FDG PET/CT examinations were acquired using a...

Celý popis

Podrobná bibliografie
Hlavní autoři: Walker, MD, Morgan, AJ, Bradley, KM, McGowan, D
Médium: Journal article
Jazyk:English
Vydáno: Society of Nuclear Medicine 2020
Popis
Shrnutí:A data-driven method for respiratory gating in PET has recently been commercially developed. We sought to compare the performance of the algorithm to an external, device-based system for oncological [18F]-FDG PET/CT imaging. Methods: 144 whole-body [18F]-FDG PET/CT examinations were acquired using a Discovery D690 or D710 PET/CT scanner (GE Healthcare), with a respiratory gating waveform recorded by an external, device based respiratory gating system. In each examination, two of the bed positions covering the liver and lung bases were acquired with duration of 6 minutes. Quiescent period gating retaining ~50% of coincidences was then able to produce images with an effective duration of 3 minutes for these two bed positions, matching the other bed positions. For each exam, 4 reconstructions were performed and compared: data driven gating (DDG-retro), external device-based gating (RPM Gated), no gating but using only the first 3 minutes of data (Ungated Matched), and no gating retaining all coincidences (Ungated Full). Lesions in the images were quantified and image quality was scored by a radiologist, blinded to the method of data processing. Results: The use of DDG-retro was found to increase SUVmax and to decrease the threshold-defined lesion volume in comparison to each of the other reconstruction options. Compared to RPM-gated, DDG-retro gave an average increase in SUVmax of 0.66 ± 0.1 g/mL (n=87, p<0.0005). Although results from the blinded image evaluation were most commonly equivalent, DDG-retro was preferred over RPM gated in 13% of exams while the opposite occurred in just 2% of exams. This was a significant preference for DDG-retro (p=0.008, n=121). Liver lesions were identified in 23 exams. Considering this subset of data, DDG-retro was ranked superior to Ungated Full in 6/23 (26%) of cases. Gated reconstruction using the external device failed in 16% of exams, while DDG-retro always provided a clinically acceptable image. Conclusion: In this clinical evaluation, the data driven respiratory gating technique provided superior performance as compared to the external device-based system. For the majority of exams the performance was equivalent, but data driven respiratory gating had superior performance in 13% of exams, leading to a significant preference overall.