On lower bounds for the matching number of subcubic graphs

We give a complete description of the set of triples (<i>α, β, γ</i>) of real numbers with the following property. There exists a constant <i>K</i> such that <i>αn<sub>3</sub></i> + <i>βn<sub>2</sub></i> + <i>γn<sub>...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Haxell, P, Scott, A
Ձևաչափ: Journal article
Հրապարակվել է: Wiley 2016
Նկարագրություն
Ամփոփում:We give a complete description of the set of triples (<i>α, β, γ</i>) of real numbers with the following property. There exists a constant <i>K</i> such that <i>αn<sub>3</sub></i> + <i>βn<sub>2</sub></i> + <i>γn<sub>1</sub></i> - <i>K</i> is a lower bound for the matching number <i>v(G)</i> of every connected subcubic graph <i>G</i>, where <i>n<sub>i</sub></i> denotes the number of vertices of degree <i>i</i> for each <i>i</i>.