On lower bounds for the matching number of subcubic graphs
We give a complete description of the set of triples (<i>α, β, γ</i>) of real numbers with the following property. There exists a constant <i>K</i> such that <i>αn<sub>3</sub></i> + <i>βn<sub>2</sub></i> + <i>γn<sub>...
Հիմնական հեղինակներ: | , |
---|---|
Ձևաչափ: | Journal article |
Հրապարակվել է: |
Wiley
2016
|
Ամփոփում: | We give a complete description of the set of triples (<i>α, β, γ</i>) of real numbers with the following property. There exists a constant <i>K</i> such that <i>αn<sub>3</sub></i> + <i>βn<sub>2</sub></i> + <i>γn<sub>1</sub></i> - <i>K</i> is a lower bound for the matching number <i>v(G)</i> of every connected subcubic graph <i>G</i>, where <i>n<sub>i</sub></i> denotes the number of vertices of degree <i>i</i> for each <i>i</i>. |
---|