On lower bounds for the matching number of subcubic graphs

We give a complete description of the set of triples (<i>α, β, γ</i>) of real numbers with the following property. There exists a constant <i>K</i> such that <i>αn<sub>3</sub></i> + <i>βn<sub>2</sub></i> + <i>γn<sub>...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Haxell, P, Scott, A
বিন্যাস: Journal article
প্রকাশিত: Wiley 2016
বিবরন
সংক্ষিপ্ত:We give a complete description of the set of triples (<i>α, β, γ</i>) of real numbers with the following property. There exists a constant <i>K</i> such that <i>αn<sub>3</sub></i> + <i>βn<sub>2</sub></i> + <i>γn<sub>1</sub></i> - <i>K</i> is a lower bound for the matching number <i>v(G)</i> of every connected subcubic graph <i>G</i>, where <i>n<sub>i</sub></i> denotes the number of vertices of degree <i>i</i> for each <i>i</i>.