D-modules on rigid analytic spaces II: Kashiwara's equivalence

<p>Let <i>X</i> be a smooth rigid analytic space. We prove that the category of co-admissible <i>D͡<sub>X</sub></i>-modules supported on a closed smooth subvariety <i>Y</i> of <i>X</i> is naturally equivalent to the category of co-ad...

Full description

Bibliographic Details
Main Authors: Ardakov, K, Wadsley, S
Format: Journal article
Published: American Mathematical Society 2018
_version_ 1826283001271549952
author Ardakov, K
Wadsley, S
author_facet Ardakov, K
Wadsley, S
author_sort Ardakov, K
collection OXFORD
description <p>Let <i>X</i> be a smooth rigid analytic space. We prove that the category of co-admissible <i>D͡<sub>X</sub></i>-modules supported on a closed smooth subvariety <i>Y</i> of <i>X</i> is naturally equivalent to the category of co-admissible <i>D͡<sub>Y</sub></i>- modules, and use this result to construct a large family of pairwise non-isomorphic simple co-admissible <i>D͡<sub>X</sub></i>-modules.</p>
first_indexed 2024-03-07T00:52:20Z
format Journal article
id oxford-uuid:86d0b1b7-ea6a-449d-84fa-45829f915b1d
institution University of Oxford
last_indexed 2024-03-07T00:52:20Z
publishDate 2018
publisher American Mathematical Society
record_format dspace
spelling oxford-uuid:86d0b1b7-ea6a-449d-84fa-45829f915b1d2022-03-26T22:06:37ZD-modules on rigid analytic spaces II: Kashiwara's equivalenceJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:86d0b1b7-ea6a-449d-84fa-45829f915b1dSymplectic Elements at OxfordAmerican Mathematical Society2018Ardakov, KWadsley, S <p>Let <i>X</i> be a smooth rigid analytic space. We prove that the category of co-admissible <i>D͡<sub>X</sub></i>-modules supported on a closed smooth subvariety <i>Y</i> of <i>X</i> is naturally equivalent to the category of co-admissible <i>D͡<sub>Y</sub></i>- modules, and use this result to construct a large family of pairwise non-isomorphic simple co-admissible <i>D͡<sub>X</sub></i>-modules.</p>
spellingShingle Ardakov, K
Wadsley, S
D-modules on rigid analytic spaces II: Kashiwara's equivalence
title D-modules on rigid analytic spaces II: Kashiwara's equivalence
title_full D-modules on rigid analytic spaces II: Kashiwara's equivalence
title_fullStr D-modules on rigid analytic spaces II: Kashiwara's equivalence
title_full_unstemmed D-modules on rigid analytic spaces II: Kashiwara's equivalence
title_short D-modules on rigid analytic spaces II: Kashiwara's equivalence
title_sort d modules on rigid analytic spaces ii kashiwara s equivalence
work_keys_str_mv AT ardakovk dmodulesonrigidanalyticspacesiikashiwarasequivalence
AT wadsleys dmodulesonrigidanalyticspacesiikashiwarasequivalence