D-modules on rigid analytic spaces II: Kashiwara's equivalence
<p>Let <i>X</i> be a smooth rigid analytic space. We prove that the category of co-admissible <i>D͡<sub>X</sub></i>-modules supported on a closed smooth subvariety <i>Y</i> of <i>X</i> is naturally equivalent to the category of co-ad...
Main Authors: | , |
---|---|
Format: | Journal article |
Published: |
American Mathematical Society
2018
|
_version_ | 1826283001271549952 |
---|---|
author | Ardakov, K Wadsley, S |
author_facet | Ardakov, K Wadsley, S |
author_sort | Ardakov, K |
collection | OXFORD |
description | <p>Let <i>X</i> be a smooth rigid analytic space. We prove that the category of co-admissible <i>D͡<sub>X</sub></i>-modules supported on a closed smooth subvariety <i>Y</i> of <i>X</i> is naturally equivalent to the category of co-admissible <i>D͡<sub>Y</sub></i>- modules, and use this result to construct a large family of pairwise non-isomorphic simple co-admissible <i>D͡<sub>X</sub></i>-modules.</p> |
first_indexed | 2024-03-07T00:52:20Z |
format | Journal article |
id | oxford-uuid:86d0b1b7-ea6a-449d-84fa-45829f915b1d |
institution | University of Oxford |
last_indexed | 2024-03-07T00:52:20Z |
publishDate | 2018 |
publisher | American Mathematical Society |
record_format | dspace |
spelling | oxford-uuid:86d0b1b7-ea6a-449d-84fa-45829f915b1d2022-03-26T22:06:37ZD-modules on rigid analytic spaces II: Kashiwara's equivalenceJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:86d0b1b7-ea6a-449d-84fa-45829f915b1dSymplectic Elements at OxfordAmerican Mathematical Society2018Ardakov, KWadsley, S <p>Let <i>X</i> be a smooth rigid analytic space. We prove that the category of co-admissible <i>D͡<sub>X</sub></i>-modules supported on a closed smooth subvariety <i>Y</i> of <i>X</i> is naturally equivalent to the category of co-admissible <i>D͡<sub>Y</sub></i>- modules, and use this result to construct a large family of pairwise non-isomorphic simple co-admissible <i>D͡<sub>X</sub></i>-modules.</p> |
spellingShingle | Ardakov, K Wadsley, S D-modules on rigid analytic spaces II: Kashiwara's equivalence |
title | D-modules on rigid analytic spaces II: Kashiwara's equivalence |
title_full | D-modules on rigid analytic spaces II: Kashiwara's equivalence |
title_fullStr | D-modules on rigid analytic spaces II: Kashiwara's equivalence |
title_full_unstemmed | D-modules on rigid analytic spaces II: Kashiwara's equivalence |
title_short | D-modules on rigid analytic spaces II: Kashiwara's equivalence |
title_sort | d modules on rigid analytic spaces ii kashiwara s equivalence |
work_keys_str_mv | AT ardakovk dmodulesonrigidanalyticspacesiikashiwarasequivalence AT wadsleys dmodulesonrigidanalyticspacesiikashiwarasequivalence |