Contractions and expansion
Let A be a finite set of reals and let K >= 1 be a real number. Suppose that for each a in A we are given an injective map f_a : A -> R which fixes a and contracts other points towards it in the sense that |a - f_a(x)| <= |a - x|/K for all x in A, and such that f_a(x) always lie...
Main Authors: | , |
---|---|
Format: | Journal article |
Published: |
2011
|
Summary: | Let A be a finite set of reals and let K >= 1 be a real number. Suppose that for each a in A we are given an injective map f_a : A -> R which fixes a and contracts other points towards it in the sense that |a - f_a(x)| <= |a - x|/K for all x in A, and such that f_a(x) always lies between a and x. Then the union of the f_a(A) has cardinality >= K|A|/10 - O_K(1). An immediate consequence of this is the estimate |A + K.A| >= K|A|/10 - O_K(1), which is a slightly weakened version of a result of Bukh. |
---|