Isolation and characterization of antigen-specific plasmablasts using a novel flow cytometry-based Ig capture assay

We report the development of a novel flow cytometry-based Ig capture assay (ICA) for the identification and sorting of individual Ab-secreting cells based on their Ag reactivity. The ICA represents a fast and versatile tool for single-cell sorting of peripheral plasmablasts, streamlining subsequent...

Full description

Bibliographic Details
Main Authors: Pinder, C, Kratochvil, S, Cizmeci, D, Muir, L, Guo, Y, Shattock, R, McKay, P
Format: Journal article
Language:English
Published: American Association of Immunologists 2017
Description
Summary:We report the development of a novel flow cytometry-based Ig capture assay (ICA) for the identification and sorting of individual Ab-secreting cells based on their Ag reactivity. The ICA represents a fast and versatile tool for single-cell sorting of peripheral plasmablasts, streamlining subsequent Ab analysis, and cloning. We demonstrate the utility of the assay by isolating Ag-reactive plasmablasts from cryopreserved PBMC obtained from volunteers vaccinated with a recombinant HIV envelope protein. To show the specificity of the ICA, we produced Ag-specific Abs from these cells and subsequently verified their Ag reactivity via ELISA. Furthermore, we used the ICA to track Ag-specific plasmablast responses in HIV-vaccine recipients over a period of 42 d and performed a head-to-head comparison with a conventional B cell ELISpot. Results were highly comparable, highlighting that this assay is a viable alternative for monitoring Ag-specific plasmablast responses at early time points after infection or vaccination. The ICA provides important added benefits in that phenotypic information can be obtained from the identified Ag-specific cells that can then be captured for downstream applications such as B cell sequencing and/or Ab cloning. We envisage the ICA as being a useful tool in Ab repertoire analysis for future clinical trials.