The thinning of the liquid layer over a probe in two-phase flow

The draining of the thin water film that is formed between a two dimensional, infinite, initially flat oil-water interface and a smooth, symmetric probe, as the interface is advected by a steady and uniform flow parallel to the probe axis, is modelled using classical fluid dynamics. The governing...

Full description

Bibliographic Details
Main Author: Oliver, J
Format: Thesis
Published: University of Oxford;Mathematical Institute 1998
_version_ 1797112485505925120
author Oliver, J
author_facet Oliver, J
author_sort Oliver, J
collection OXFORD
description The draining of the thin water film that is formed between a two dimensional, infinite, initially flat oil-water interface and a smooth, symmetric probe, as the interface is advected by a steady and uniform flow parallel to the probe axis, is modelled using classical fluid dynamics. The governing equations are nondimensionalised using values appropriate to the oil extraction industry. The bulk flow is driven by inertia and, in some extremes, surface tension while the viscous effects are initially confined to thin boundary layers on the probe and the interface. The flow in the thin water film is dominated by surface tension, and passes through a series of asymptotic regimes in which inertial forces are gradually overtaken by viscous forces. For each of these regimes, and for those concerning the earlier stages of approach, possible solution strategies are discussed and relevant literature reviewed. Consideration is given to the drainage mechanism around a probe which protrudes a fixed specified distance into the oil. A lubrication analysis of the thin water film may be matched into a capillary-static solution for the outer geometry using a slender transition region if, and only if, the pressure gradient in the film is negative as it meets the static meniscus. The remarkable result is that, in practice, there is a race between rupture in the transition region and rupture at the tip. The analysis is applicable to the case of a very slow far field flow and offers significant insight into the non-static case. Finally, a similar approach is applied to study the motion of the thin water film in the fully inviscid approximation, with surface tension and a density contrast between the fluids.
first_indexed 2024-03-07T08:24:50Z
format Thesis
id oxford-uuid:8891fc7e-a274-48fa-9f57-151e058b1369
institution University of Oxford
last_indexed 2024-03-07T08:24:50Z
publishDate 1998
publisher University of Oxford;Mathematical Institute
record_format dspace
spelling oxford-uuid:8891fc7e-a274-48fa-9f57-151e058b13692024-02-12T11:42:53ZThe thinning of the liquid layer over a probe in two-phase flowThesishttp://purl.org/coar/resource_type/c_db06uuid:8891fc7e-a274-48fa-9f57-151e058b1369Mathematical Institute - ePrintsUniversity of Oxford;Mathematical Institute1998Oliver, JThe draining of the thin water film that is formed between a two dimensional, infinite, initially flat oil-water interface and a smooth, symmetric probe, as the interface is advected by a steady and uniform flow parallel to the probe axis, is modelled using classical fluid dynamics. The governing equations are nondimensionalised using values appropriate to the oil extraction industry. The bulk flow is driven by inertia and, in some extremes, surface tension while the viscous effects are initially confined to thin boundary layers on the probe and the interface. The flow in the thin water film is dominated by surface tension, and passes through a series of asymptotic regimes in which inertial forces are gradually overtaken by viscous forces. For each of these regimes, and for those concerning the earlier stages of approach, possible solution strategies are discussed and relevant literature reviewed. Consideration is given to the drainage mechanism around a probe which protrudes a fixed specified distance into the oil. A lubrication analysis of the thin water film may be matched into a capillary-static solution for the outer geometry using a slender transition region if, and only if, the pressure gradient in the film is negative as it meets the static meniscus. The remarkable result is that, in practice, there is a race between rupture in the transition region and rupture at the tip. The analysis is applicable to the case of a very slow far field flow and offers significant insight into the non-static case. Finally, a similar approach is applied to study the motion of the thin water film in the fully inviscid approximation, with surface tension and a density contrast between the fluids.
spellingShingle Oliver, J
The thinning of the liquid layer over a probe in two-phase flow
title The thinning of the liquid layer over a probe in two-phase flow
title_full The thinning of the liquid layer over a probe in two-phase flow
title_fullStr The thinning of the liquid layer over a probe in two-phase flow
title_full_unstemmed The thinning of the liquid layer over a probe in two-phase flow
title_short The thinning of the liquid layer over a probe in two-phase flow
title_sort thinning of the liquid layer over a probe in two phase flow
work_keys_str_mv AT oliverj thethinningoftheliquidlayeroveraprobeintwophaseflow
AT oliverj thinningoftheliquidlayeroveraprobeintwophaseflow