The effect of repetition lag on electrophysiological and haemodynamic correlates of visual object priming.

The modulation of repetition effects by the lag between first and second presentations of a visual object during a speeded semantic judgment task was examined using both scalp event-related potentials (ERPs) and event-related functional magnetic resonance imaging (efMRI). Four levels of lag were use...

Full description

Bibliographic Details
Main Authors: Henson, R, Rylands, A, Ross, E, Vuilleumeir, P, Rugg, MD
Format: Journal article
Language:English
Published: 2004
Description
Summary:The modulation of repetition effects by the lag between first and second presentations of a visual object during a speeded semantic judgment task was examined using both scalp event-related potentials (ERPs) and event-related functional magnetic resonance imaging (efMRI). Four levels of lag were used within a single session, from zero to one, to tens of intervening stimuli, and which allowed partial separation of the effects of interference from the effects of time. Reaction times (RTs) showed that the magnitude of repetition priming decreased as lag increased. The ERP data showed two distinct effects of repetition, one between 150 and 300 ms post stimulus and another between 400 and 600 ms. The magnitude of both effects, particularly the earlier one, decreased as lag increased. The fMRI data showed a decrease in the haemodynamic response associated with repetition in several inferior occipitotemporal regions, the magnitude of which also typically decreased as lag increased. In general, and contrary to expectations, lag appeared to have mainly quantitative effects on the three types of dependent variable: there was little evidence for qualitative differences in the neural correlates of repetition effects at different lags.