Data decomposition using independent component analysis with prior constraints

In many data analysis problems, it is useful to consider the data as generated from a set of unknown (latent) generators or sources. The observations we make of a system are then taken to be related to these sources through some unknown function. Furthermore, the (unknown) number of underlying laten...

Full description

Bibliographic Details
Main Authors: Roberts, S, Choudrey, R
Format: Journal article
Language:English
Published: 2003
Description
Summary:In many data analysis problems, it is useful to consider the data as generated from a set of unknown (latent) generators or sources. The observations we make of a system are then taken to be related to these sources through some unknown function. Furthermore, the (unknown) number of underlying latent sources may be less than the number of observations. Recent developments in independent component analysis (ICA) have shown that, in the case where the unknown function linking sources to observations is linear, such data decomposition may be achieved in a mathematically elegant manner. In this paper, we extend the general ICA paradigm to include a very flexible source model, prior constraints and conditioning on sets of intermediate variables so that ICA forms one part of a hierarchical system. We show that such an approach allows for efficient discovery of hidden representation in data and for unsupervised data partitioning. © 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.