Adversarial attacks can deceive AI systems, leading to misclassification or incorrect decisions
This comprehensive analysis thoroughly examines the topic of adversarial attacks in artificial intelligence (AI), providing a detailed overview of the various methods used to compromise machine learning models. It explores different attack techniques, ranging from the simple Fast Gradient Sign Metho...
Autores principales: | Radanliev, P, Santos, O |
---|---|
Formato: | Internet publication |
Lenguaje: | English |
Publicado: |
2023
|
Ejemplares similares
-
MA‐CAT: Misclassification‐Aware Contrastive Adversarial Training
por: Hongxin Zhi, et al.
Publicado: (2024-05-01) -
Frida Kahlo: Appearances Can Be Deceiving
por: Berit Potter
Publicado: (2021-06-01) -
Adversarial Defense on Harmony: Reverse Attack for Robust AI Models Against Adversarial Attacks
por: Yebon Kim, et al.
Publicado: (2024-01-01) -
Deceived /
por: Barrett, Maria
Publicado: (1994) -
The deceiver /
por: Forsyth, Frederick, 1938-
Publicado: (1992)