Droplet printing reveals the importance of micron-scale structure for bacterial ecology
Bacteria often live in diverse communities where the spatial arrangement of strains and species is considered critical for their ecology. However, a test of this hypothesis requires manipulation at the fine scales at which spatial structure naturally occurs. Here we develop a droplet-based printing...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Springer Nature
2021
|
_version_ | 1826307959278272512 |
---|---|
author | Krishna Kumar, R Meiller-Legrand, TA Alcinesio, A Gonzalez, D Mavridou, DAI Meacock, OJ Smith, WPJ Zhou, L Kim, W Pulcu, GS Bayley, H Foster, KR |
author_facet | Krishna Kumar, R Meiller-Legrand, TA Alcinesio, A Gonzalez, D Mavridou, DAI Meacock, OJ Smith, WPJ Zhou, L Kim, W Pulcu, GS Bayley, H Foster, KR |
author_sort | Krishna Kumar, R |
collection | OXFORD |
description | Bacteria often live in diverse communities where the spatial arrangement of strains and species is considered critical for their ecology. However, a test of this hypothesis requires manipulation at the fine scales at which spatial structure naturally occurs. Here we develop a droplet-based printing method to arrange bacterial genotypes across a sub-millimetre array. We print strains of the gut bacterium Escherichia coli that naturally compete with one another using protein toxins. Our experiments reveal that toxin-producing strains largely eliminate susceptible non-producers when genotypes are well-mixed. However, printing strains side-by-side creates an ecological refuge where susceptible strains can persist in large numbers. Moving to competitions between toxin producers reveals that spatial structure can make the difference between one strain winning and mutual destruction. Finally, we print different potential barriers between competing strains to understand how ecological refuges form, which shows that cells closest to a toxin producer mop up the toxin and protect their clonemates. Our work provides a method to generate customised bacterial communities with defined spatial distributions, and reveals that micron-scale changes in these distributions can drive major shifts in ecology. |
first_indexed | 2024-03-07T07:10:59Z |
format | Journal article |
id | oxford-uuid:88db715d-85f6-4021-b0dc-df26a24779de |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T07:10:59Z |
publishDate | 2021 |
publisher | Springer Nature |
record_format | dspace |
spelling | oxford-uuid:88db715d-85f6-4021-b0dc-df26a24779de2022-06-24T10:36:00ZDroplet printing reveals the importance of micron-scale structure for bacterial ecology Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:88db715d-85f6-4021-b0dc-df26a24779deEnglishSymplectic ElementsSpringer Nature2021Krishna Kumar, RMeiller-Legrand, TAAlcinesio, AGonzalez, DMavridou, DAIMeacock, OJSmith, WPJZhou, LKim, WPulcu, GSBayley, HFoster, KRBacteria often live in diverse communities where the spatial arrangement of strains and species is considered critical for their ecology. However, a test of this hypothesis requires manipulation at the fine scales at which spatial structure naturally occurs. Here we develop a droplet-based printing method to arrange bacterial genotypes across a sub-millimetre array. We print strains of the gut bacterium Escherichia coli that naturally compete with one another using protein toxins. Our experiments reveal that toxin-producing strains largely eliminate susceptible non-producers when genotypes are well-mixed. However, printing strains side-by-side creates an ecological refuge where susceptible strains can persist in large numbers. Moving to competitions between toxin producers reveals that spatial structure can make the difference between one strain winning and mutual destruction. Finally, we print different potential barriers between competing strains to understand how ecological refuges form, which shows that cells closest to a toxin producer mop up the toxin and protect their clonemates. Our work provides a method to generate customised bacterial communities with defined spatial distributions, and reveals that micron-scale changes in these distributions can drive major shifts in ecology. |
spellingShingle | Krishna Kumar, R Meiller-Legrand, TA Alcinesio, A Gonzalez, D Mavridou, DAI Meacock, OJ Smith, WPJ Zhou, L Kim, W Pulcu, GS Bayley, H Foster, KR Droplet printing reveals the importance of micron-scale structure for bacterial ecology |
title | Droplet printing reveals the importance of micron-scale structure for bacterial ecology |
title_full | Droplet printing reveals the importance of micron-scale structure for bacterial ecology |
title_fullStr | Droplet printing reveals the importance of micron-scale structure for bacterial ecology |
title_full_unstemmed | Droplet printing reveals the importance of micron-scale structure for bacterial ecology |
title_short | Droplet printing reveals the importance of micron-scale structure for bacterial ecology |
title_sort | droplet printing reveals the importance of micron scale structure for bacterial ecology |
work_keys_str_mv | AT krishnakumarr dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT meillerlegrandta dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT alcinesioa dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT gonzalezd dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT mavridoudai dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT meacockoj dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT smithwpj dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT zhoul dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT kimw dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT pulcugs dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT bayleyh dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology AT fosterkr dropletprintingrevealstheimportanceofmicronscalestructureforbacterialecology |