Counting conjugacy classes

This paper proves the rationality of Poincaré series whose coefficients are defined using the number of conjugacy classes in a system of finite groups defined as finite images of linear groups over ℤp modulo natural congruence subgroups. © 2005 London Mathematical Society.

Bibliographic Details
Main Author: Du Sautoy, M
Format: Journal article
Language:English
Published: 2005
_version_ 1797080348792717312
author Du Sautoy, M
author_facet Du Sautoy, M
author_sort Du Sautoy, M
collection OXFORD
description This paper proves the rationality of Poincaré series whose coefficients are defined using the number of conjugacy classes in a system of finite groups defined as finite images of linear groups over ℤp modulo natural congruence subgroups. © 2005 London Mathematical Society.
first_indexed 2024-03-07T00:58:43Z
format Journal article
id oxford-uuid:88fbca0d-ae00-4062-9517-bb09ebe26a23
institution University of Oxford
language English
last_indexed 2024-03-07T00:58:43Z
publishDate 2005
record_format dspace
spelling oxford-uuid:88fbca0d-ae00-4062-9517-bb09ebe26a232022-03-26T22:21:21ZCounting conjugacy classesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:88fbca0d-ae00-4062-9517-bb09ebe26a23EnglishSymplectic Elements at Oxford2005Du Sautoy, MThis paper proves the rationality of Poincaré series whose coefficients are defined using the number of conjugacy classes in a system of finite groups defined as finite images of linear groups over ℤp modulo natural congruence subgroups. © 2005 London Mathematical Society.
spellingShingle Du Sautoy, M
Counting conjugacy classes
title Counting conjugacy classes
title_full Counting conjugacy classes
title_fullStr Counting conjugacy classes
title_full_unstemmed Counting conjugacy classes
title_short Counting conjugacy classes
title_sort counting conjugacy classes
work_keys_str_mv AT dusautoym countingconjugacyclasses