Summary: | The Numerical Renormalization Group is used to solve quantum impurity problems, which describe magnetic impurities in metals, nanodevices, and correlated materials within DMFT. Here we present a simple generalization of the Wilson Chain, which improves the scaling of computational cost with the number of channels/bands, bringing new problems within reach. The method is applied to calculate the t-matrix of the three-channel Kondo model at T=0, which shows universal crossovers near non-Fermi liquid critical points. A non-integrable three-impurity problem with three bands is also studied, revealing a rich phase diagram and novel screening/overscreening mechanisms.
|