Strategy complexity of parity objectives in countable MDPs

We study countably infinite MDPs with parity objectives. Unlike in finite MDPs, optimal strategies need not exist, and may require infinite memory if they do. We provide a complete picture of the exact strategy complexity of ε-optimal strategies (and optimal strategies, where they exist) for all sub...

Full description

Bibliographic Details
Main Authors: Kiefer, S, Mayr, R, Shirmohammadi, M, Totzke, P
Format: Conference item
Language:English
Published: Schloss Dagstuhl 2020
_version_ 1797080475456503808
author Kiefer, S
Mayr, R
Shirmohammadi, M
Totzke, P
author_facet Kiefer, S
Mayr, R
Shirmohammadi, M
Totzke, P
author_sort Kiefer, S
collection OXFORD
description We study countably infinite MDPs with parity objectives. Unlike in finite MDPs, optimal strategies need not exist, and may require infinite memory if they do. We provide a complete picture of the exact strategy complexity of ε-optimal strategies (and optimal strategies, where they exist) for all subclasses of parity objectives in the Mostowski hierarchy. Either MD-strategies, Markov strategies, or 1-bit Markov strategies are necessary and sufficient, depending on the number of colors, the branching degree of the MDP, and whether one considers ε-optimal or optimal strategies. In particular, 1-bit Markov strategies are necessary and sufficient for ε-optimal (resp. optimal) strategies for general parity objectives.
first_indexed 2024-03-07T01:00:36Z
format Conference item
id oxford-uuid:89939a66-a99e-4318-9d30-bd7671ec15d5
institution University of Oxford
language English
last_indexed 2024-03-07T01:00:36Z
publishDate 2020
publisher Schloss Dagstuhl
record_format dspace
spelling oxford-uuid:89939a66-a99e-4318-9d30-bd7671ec15d52022-03-26T22:25:38ZStrategy complexity of parity objectives in countable MDPsConference itemhttp://purl.org/coar/resource_type/c_5794uuid:89939a66-a99e-4318-9d30-bd7671ec15d5EnglishSymplectic ElementsSchloss Dagstuhl2020Kiefer, SMayr, RShirmohammadi, MTotzke, PWe study countably infinite MDPs with parity objectives. Unlike in finite MDPs, optimal strategies need not exist, and may require infinite memory if they do. We provide a complete picture of the exact strategy complexity of ε-optimal strategies (and optimal strategies, where they exist) for all subclasses of parity objectives in the Mostowski hierarchy. Either MD-strategies, Markov strategies, or 1-bit Markov strategies are necessary and sufficient, depending on the number of colors, the branching degree of the MDP, and whether one considers ε-optimal or optimal strategies. In particular, 1-bit Markov strategies are necessary and sufficient for ε-optimal (resp. optimal) strategies for general parity objectives.
spellingShingle Kiefer, S
Mayr, R
Shirmohammadi, M
Totzke, P
Strategy complexity of parity objectives in countable MDPs
title Strategy complexity of parity objectives in countable MDPs
title_full Strategy complexity of parity objectives in countable MDPs
title_fullStr Strategy complexity of parity objectives in countable MDPs
title_full_unstemmed Strategy complexity of parity objectives in countable MDPs
title_short Strategy complexity of parity objectives in countable MDPs
title_sort strategy complexity of parity objectives in countable mdps
work_keys_str_mv AT kiefers strategycomplexityofparityobjectivesincountablemdps
AT mayrr strategycomplexityofparityobjectivesincountablemdps
AT shirmohammadim strategycomplexityofparityobjectivesincountablemdps
AT totzkep strategycomplexityofparityobjectivesincountablemdps