Molecular Gas and Star Formation in Local Early-type Galaxies

The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the ATLAS 3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surpri...

Full description

Bibliographic Details
Main Authors: Bureau, M, Davis, T, Alatalo, K, Crocker, A, Blitz, L, Young, L, Combes, F, Bois, M, Bournaud, F, Cappellari, M, Davies, R, de Zeeuw, P, Duc, P, Emsellem, E, Khochfar, S, Krajnovic, D, Kuntschner, H, Lablanche, P, McDermid, R, Morganti, R, Naab, T, Oosterloo, T, Sarzi, M, Scott, N, Serra, P
Format: Journal article
Language:English
Published: 2011
Description
Summary:The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the ATLAS 3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types. © Copyright International Astronomical Union 2011.