Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
We present a trainable segmentation method implemented within the python package ParticleSpy. The method takes user labelled pixels, which are used to train a classifier and segment images of inorganic nanoparticles from transmission electron microscope images. This implementation is based on the tr...
Główni autorzy: | Bell, CG, Treder, KP, Kim, JS, Schuster, ME, Kirkland, AI, Slater, TJA |
---|---|
Format: | Journal article |
Język: | English |
Wydane: |
Wiley
2022
|
Podobne zapisy
-
Applications of deep learning in electron microscopy
od: Treder, KP, i wsp.
Wydane: (2022) -
Trainable model for segmenting and identifying Nasopharyngeal carcinoma
od: Mohammed, Mazin Abed, i wsp.
Wydane: (2018) -
Automated single-particle reconstruction of heterogeneous inorganic nanoparticles
od: Slater, TJA, i wsp.
Wydane: (2020) -
Issues on Trainability
od: Zsolt Radak, i wsp.
Wydane: (2022-01-01) -
Counting electrons in transmission electron microscopes
od: Moldovan, G, i wsp.
Wydane: (2008)