Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
We present a trainable segmentation method implemented within the python package ParticleSpy. The method takes user labelled pixels, which are used to train a classifier and segment images of inorganic nanoparticles from transmission electron microscope images. This implementation is based on the tr...
Päätekijät: | Bell, CG, Treder, KP, Kim, JS, Schuster, ME, Kirkland, AI, Slater, TJA |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Wiley
2022
|
Samankaltaisia teoksia
-
Applications of deep learning in electron microscopy
Tekijä: Treder, KP, et al.
Julkaistu: (2022) -
Trainable model for segmenting and identifying Nasopharyngeal carcinoma
Tekijä: Mohammed, Mazin Abed, et al.
Julkaistu: (2018) -
Automated single-particle reconstruction of heterogeneous inorganic nanoparticles
Tekijä: Slater, TJA, et al.
Julkaistu: (2020) -
Tiny Trainable Instruments
Tekijä: Montoya-Moraga, Aarón
Julkaistu: (2022) -
Counting electrons in transmission electron microscopes
Tekijä: Moldovan, G, et al.
Julkaistu: (2008)