Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
We present a trainable segmentation method implemented within the python package ParticleSpy. The method takes user labelled pixels, which are used to train a classifier and segment images of inorganic nanoparticles from transmission electron microscope images. This implementation is based on the tr...
Hlavní autoři: | Bell, CG, Treder, KP, Kim, JS, Schuster, ME, Kirkland, AI, Slater, TJA |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Wiley
2022
|
Podobné jednotky
-
Applications of deep learning in electron microscopy
Autor: Treder, KP, a další
Vydáno: (2022) -
Trainable model for segmenting and identifying Nasopharyngeal carcinoma
Autor: Mohammed, Mazin Abed, a další
Vydáno: (2018) -
Automated single-particle reconstruction of heterogeneous inorganic nanoparticles
Autor: Slater, TJA, a další
Vydáno: (2020) -
Issues on Trainability
Autor: Zsolt Radak, a další
Vydáno: (2022-01-01) -
Counting electrons in transmission electron microscopes
Autor: Moldovan, G, a další
Vydáno: (2008)