Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
We present a trainable segmentation method implemented within the python package ParticleSpy. The method takes user labelled pixels, which are used to train a classifier and segment images of inorganic nanoparticles from transmission electron microscope images. This implementation is based on the tr...
Main Authors: | Bell, CG, Treder, KP, Kim, JS, Schuster, ME, Kirkland, AI, Slater, TJA |
---|---|
格式: | Journal article |
语言: | English |
出版: |
Wiley
2022
|
相似书籍
-
Applications of deep learning in electron microscopy
由: Treder, KP, et al.
出版: (2022) -
Trainable model for segmenting and identifying Nasopharyngeal carcinoma
由: Mohammed, Mazin Abed, et al.
出版: (2018) -
Automated single-particle reconstruction of heterogeneous inorganic nanoparticles
由: Slater, TJA, et al.
出版: (2020) -
Issues on Trainability
由: Zsolt Radak, et al.
出版: (2022-01-01) -
Counting electrons in transmission electron microscopes
由: Moldovan, G, et al.
出版: (2008)