Few-body bound complexes in one-dimensional dipolar gases and nondestructive optical detection
We consider dipolar interactions between heteronuclear molecules in low-dimensional geometries. The setup consists of two one-dimensional tubes. We study the stability of possible few-body complexes in the regime of repulsive intratube interaction, where the binding arises from intertube attraction....
Main Authors: | , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2011
|
_version_ | 1797080924609839104 |
---|---|
author | Zinner, N Wunsch, B Mekhov, I Huang, S Wang, D Demler, E |
author_facet | Zinner, N Wunsch, B Mekhov, I Huang, S Wang, D Demler, E |
author_sort | Zinner, N |
collection | OXFORD |
description | We consider dipolar interactions between heteronuclear molecules in low-dimensional geometries. The setup consists of two one-dimensional tubes. We study the stability of possible few-body complexes in the regime of repulsive intratube interaction, where the binding arises from intertube attraction. The stable dimers, trimers, and tetramers are found and we discuss their properties for both bosonic and fermionic molecules. To observe these complexes we propose an optical nondestructive detection scheme that enables in situ observation of the creation and dissociation of the few-body complexes. A detailed description of the expected signal of such measurements is given using the numerically calculated wave functions of the bound states. We also discuss implications on the many-body physics of dipolar systems in tubular geometries, as well as experimental issues related to the external harmonic confinement along the tube and the prospect of applying an in-tube optical lattice to increase the effective dipole strength. © 2011 American Physical Society. |
first_indexed | 2024-03-07T01:07:14Z |
format | Journal article |
id | oxford-uuid:8bc6cef4-ff4a-4e1a-9884-d28e5545c8f0 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T01:07:14Z |
publishDate | 2011 |
record_format | dspace |
spelling | oxford-uuid:8bc6cef4-ff4a-4e1a-9884-d28e5545c8f02022-03-26T22:40:12ZFew-body bound complexes in one-dimensional dipolar gases and nondestructive optical detectionJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:8bc6cef4-ff4a-4e1a-9884-d28e5545c8f0EnglishSymplectic Elements at Oxford2011Zinner, NWunsch, BMekhov, IHuang, SWang, DDemler, EWe consider dipolar interactions between heteronuclear molecules in low-dimensional geometries. The setup consists of two one-dimensional tubes. We study the stability of possible few-body complexes in the regime of repulsive intratube interaction, where the binding arises from intertube attraction. The stable dimers, trimers, and tetramers are found and we discuss their properties for both bosonic and fermionic molecules. To observe these complexes we propose an optical nondestructive detection scheme that enables in situ observation of the creation and dissociation of the few-body complexes. A detailed description of the expected signal of such measurements is given using the numerically calculated wave functions of the bound states. We also discuss implications on the many-body physics of dipolar systems in tubular geometries, as well as experimental issues related to the external harmonic confinement along the tube and the prospect of applying an in-tube optical lattice to increase the effective dipole strength. © 2011 American Physical Society. |
spellingShingle | Zinner, N Wunsch, B Mekhov, I Huang, S Wang, D Demler, E Few-body bound complexes in one-dimensional dipolar gases and nondestructive optical detection |
title | Few-body bound complexes in one-dimensional dipolar gases and nondestructive optical detection |
title_full | Few-body bound complexes in one-dimensional dipolar gases and nondestructive optical detection |
title_fullStr | Few-body bound complexes in one-dimensional dipolar gases and nondestructive optical detection |
title_full_unstemmed | Few-body bound complexes in one-dimensional dipolar gases and nondestructive optical detection |
title_short | Few-body bound complexes in one-dimensional dipolar gases and nondestructive optical detection |
title_sort | few body bound complexes in one dimensional dipolar gases and nondestructive optical detection |
work_keys_str_mv | AT zinnern fewbodyboundcomplexesinonedimensionaldipolargasesandnondestructiveopticaldetection AT wunschb fewbodyboundcomplexesinonedimensionaldipolargasesandnondestructiveopticaldetection AT mekhovi fewbodyboundcomplexesinonedimensionaldipolargasesandnondestructiveopticaldetection AT huangs fewbodyboundcomplexesinonedimensionaldipolargasesandnondestructiveopticaldetection AT wangd fewbodyboundcomplexesinonedimensionaldipolargasesandnondestructiveopticaldetection AT demlere fewbodyboundcomplexesinonedimensionaldipolargasesandnondestructiveopticaldetection |