On the convergence of a regularized Jacobi algorithm for convex optimization

In this paper we consider the regularized version of the Jacobi algorithm, a block coordinate descent method for convex optimization with an objective function consisting of the sum of a differentiable function and a block-separable function. Under certain regularity assumptions on the objective fun...

全面介紹

書目詳細資料
Main Authors: Banjac, G, Margellos, K, Goulart, P
格式: Journal article
出版: Institute of Electrical and Electronics Engineers 2017
實物特徵
總結:In this paper we consider the regularized version of the Jacobi algorithm, a block coordinate descent method for convex optimization with an objective function consisting of the sum of a differentiable function and a block-separable function. Under certain regularity assumptions on the objective function, this algorithm has been shown to satisfy the so-called sufficient decrease condition, and consequently to converge in objective function value. In this paper we revisit the convergence analysis of the regularized Jacobi algorithm and show that it also converges in iterates under very mild conditions on the objective function. Moreover, we establish conditions under which the algorithm achieves a linear convergence rate.