Self-supervised learning for spinal MRIs
A significant proportion of patients scanned in a clinical setting have follow-up scans. We show in this work that such longitudinal scans alone can be used as a form of “free” self-supervision for training a deep network. We demonstrate this self-supervised learning for the case of T2-weighted sagi...
Автори: | Jamaludin, A, Kadir, T, Zisserman, A |
---|---|
Формат: | Conference item |
Опубліковано: |
Springer, Cham
2017
|
Схожі ресурси
Схожі ресурси
-
SpineNet: Automated classification and evidence visualization in spinal MRIs
за авторством: Jamaludin, A, та інші
Опубліковано: (2017) -
SpineNet: automatically pinpointing classification evidence in spinal MRIs
за авторством: Jamaludin, A, та інші
Опубліковано: (2016) -
Automated detection, labelling and radiological grading of clinical spinal MRIs
за авторством: Windsor, R, та інші
Опубліковано: (2024) -
Automated detection, labelling and radiological grading of clinical spinal MRIs
за авторством: Rhydian Windsor, та інші
Опубліковано: (2024-07-01) -
Automated radiological grading of spinal MRIs via weak and self-supervision
за авторством: Windsor, RL
Опубліковано: (2023)