Genes and causation.

Relating genotypes to phenotypes is problematic not only owing to the extreme complexity of the interactions between genes, proteins and high-level physiological functions but also because the paradigms for genetic causality in biological systems are seriously confused. This paper examines some of t...

Full description

Bibliographic Details
Main Author: Noble, D
Format: Journal article
Language:English
Published: 2008
_version_ 1797081148390637568
author Noble, D
author_facet Noble, D
author_sort Noble, D
collection OXFORD
description Relating genotypes to phenotypes is problematic not only owing to the extreme complexity of the interactions between genes, proteins and high-level physiological functions but also because the paradigms for genetic causality in biological systems are seriously confused. This paper examines some of the misconceptions, starting with the changing definitions of a gene, from the cause of phenotype characters to the stretches of DNA. I then assess whether the 'digital' nature of DNA sequences guarantees primacy in causation compared to non-DNA inheritance, whether it is meaningful or useful to refer to genetic programs, and the role of high-level (downward) causation. The metaphors that served us well during the molecular biological phase of recent decades have limited or even misleading impacts in the multilevel world of systems biology. New paradigms are needed if we are to succeed in unravelling multifactorial genetic causation at higher levels of physiological function and so to explain the phenomena that genetics was originally about. Because it can solve the 'genetic differential effect problem', modelling of biological function has an essential role to play in unravelling genetic causation.
first_indexed 2024-03-07T01:10:26Z
format Journal article
id oxford-uuid:8ccfaf52-ca6e-4f96-a55c-59fc298b4509
institution University of Oxford
language English
last_indexed 2024-03-07T01:10:26Z
publishDate 2008
record_format dspace
spelling oxford-uuid:8ccfaf52-ca6e-4f96-a55c-59fc298b45092022-03-26T22:46:58ZGenes and causation.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:8ccfaf52-ca6e-4f96-a55c-59fc298b4509EnglishSymplectic Elements at Oxford2008Noble, DRelating genotypes to phenotypes is problematic not only owing to the extreme complexity of the interactions between genes, proteins and high-level physiological functions but also because the paradigms for genetic causality in biological systems are seriously confused. This paper examines some of the misconceptions, starting with the changing definitions of a gene, from the cause of phenotype characters to the stretches of DNA. I then assess whether the 'digital' nature of DNA sequences guarantees primacy in causation compared to non-DNA inheritance, whether it is meaningful or useful to refer to genetic programs, and the role of high-level (downward) causation. The metaphors that served us well during the molecular biological phase of recent decades have limited or even misleading impacts in the multilevel world of systems biology. New paradigms are needed if we are to succeed in unravelling multifactorial genetic causation at higher levels of physiological function and so to explain the phenomena that genetics was originally about. Because it can solve the 'genetic differential effect problem', modelling of biological function has an essential role to play in unravelling genetic causation.
spellingShingle Noble, D
Genes and causation.
title Genes and causation.
title_full Genes and causation.
title_fullStr Genes and causation.
title_full_unstemmed Genes and causation.
title_short Genes and causation.
title_sort genes and causation
work_keys_str_mv AT nobled genesandcausation