Development of computational design tools for characterising and modelling cutting in ultra soft solids

Computational modelling of the in vivo mechanical response of various biological materials within the human organism, such as brain tissue, bone, arteries, ingested food, is an increasingly cost-effective design tool for bio-medical, bio-engineering and surgical applications. This study addresses th...

Full description

Bibliographic Details
Main Authors: Skamniotis, CG, Charalambides, MN
Format: Journal article
Language:English
Published: Elsevier 2020
Description
Summary:Computational modelling of the in vivo mechanical response of various biological materials within the human organism, such as brain tissue, bone, arteries, ingested food, is an increasingly cost-effective design tool for bio-medical, bio-engineering and surgical applications. This study addresses the knowledge gap in simulating deformation-fracture during cutting in continua that lie in the transition between a soft solid and a complex fluid state. Hydrated food is one such system produced naturally after swallowing. We show that a viscoplastic-damage constitutive law calibrated through compression tests on hydrated biscuit particles, can be utilised in Eulerian Finite Element (FE) analysis to predict complex localised deformation-fracture material behaviour during cutting at two length scales with high fidelity. We demonstrate that in such materials a fracture term is not always necessary to predict ultimate separation and that the Eulerian FE analysis is a versatile approach based on which largely different material cutting behaviours can be modelled. Our study provides a platform for understanding and optimising processes involving ultra-soft materials which flow excessively and exhibit weak or strong cutting resistance.