Conversion of Li2FeSbO5 to the Fe(III)/Fe(V) phase LiFeSbO5 via topochemical lithium extraction

<p>Reaction between Na<sub>2</sub>FeSbO<sub>5</sub>&nbsp;and LiNO<sub>3</sub>&nbsp;at 300 &deg;C yields the metastable phase Li<sub>2</sub>FeSbO<sub>5</sub>&nbsp;which is isostructural with the sodium &ldquo;parent...

Full description

Bibliographic Details
Main Authors: de Irujo-Labalde, XM, Scrimshire, A, Bingham, PA, Suard, E, Hayward, MA
Format: Journal article
Language:English
Published: American Chemical Society 2022
Description
Summary:<p>Reaction between Na<sub>2</sub>FeSbO<sub>5</sub>&nbsp;and LiNO<sub>3</sub>&nbsp;at 300 &deg;C yields the metastable phase Li<sub>2</sub>FeSbO<sub>5</sub>&nbsp;which is isostructural with the sodium &ldquo;parent&rdquo; phase (space group&nbsp;<em>Pbna</em>,&nbsp;<em>a</em>&nbsp;= 15.138(1) &Aring;,&nbsp;<em>b</em>&nbsp;= 5.1440(3) &Aring;,&nbsp;<em>c</em>&nbsp;= 10.0936(6) &Aring;) consisting of an alternating stack of Li<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub>&nbsp;and Li<sub>2</sub>Sb<sub>2</sub>O<sub>5</sub>&nbsp;sheets containing tetrahedral coordinated Fe<sup>3+</sup>&nbsp;and octahedrally coordinated Sb<sup>5+</sup>, respectively. Further reaction between Li<sub>2</sub>FeSbO<sub>5</sub>&nbsp;with NO<sub>2</sub>BF<sub>4</sub>&nbsp;in acetonitrile at room temperature yields LiFeSbO<sub>5</sub>, which adopts an orthorhombic structure (space group&nbsp;<em>Pbn</em>2<sub>1</sub>,&nbsp;<em>a</em>&nbsp;= 14.2943(4) &Aring;,&nbsp;<em>b</em>&nbsp;= 5.2771(1) &Aring;,&nbsp;<em>c</em>&nbsp;= 9.5610(3) &Aring;) in which the LiFeO<sub>5</sub>&nbsp;layers have shifted on lithium extraction, resulting in an octahedral coordination for the iron cations.&nbsp;<sup>57</sup>Fe M&ouml;ssbauer data indicate that the nominal Fe<sup>4+</sup>&nbsp;cations present in LiFeSbO<sub>5</sub>&nbsp;have disproportionated into a 1:1 combination of Fe<sup>3+</sup>&nbsp;and Fe<sup>5+</sup>&nbsp;centers which are ordered within the LiFeSbO<sub>5</sub>&nbsp;structural framework. It is widely observed that Fe<sup>4+</sup>&nbsp;centers tend to be unstable in delithiated Li&ndash;Fe&ndash;X&ndash;O phases currently proposed as lithium-ion battery cathode materials, so the apparent stability of highly oxidized Fe<sup>5+</sup>&nbsp;centers in LiFeSbO<sub>5</sub>&nbsp;is notable, suggesting cathode materials based on oxidizing Fe<sup>3+</sup>&nbsp;could be possible. However, in this instance, the structural change which occurs on delithiation of Li<sub>2</sub>FeSbO<sub>5</sub>&nbsp;prevents electrochemical cycling of this material.</p>