Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.

Earlier studies have demonstrated that a high (mM) extracellular Ca2+ concentration triggers intracellular [Ca2+] signals with a consequent inhibition of bone resorptive activity. We now report that micromolar concentrations of the divalent cation, Ni2+, elicited rapid and concentration-dependent el...

Full description

Bibliographic Details
Main Authors: Shankar, V, Bax, C, Bax, B, Alam, A, Moonga, B, Simon, B, Pazianas, M, Huang, C, Zaidi, M
Format: Journal article
Language:English
Published: 1993
_version_ 1826284396867485696
author Shankar, V
Bax, C
Bax, B
Alam, A
Moonga, B
Simon, B
Pazianas, M
Huang, C
Zaidi, M
author_facet Shankar, V
Bax, C
Bax, B
Alam, A
Moonga, B
Simon, B
Pazianas, M
Huang, C
Zaidi, M
author_sort Shankar, V
collection OXFORD
description Earlier studies have demonstrated that a high (mM) extracellular Ca2+ concentration triggers intracellular [Ca2+] signals with a consequent inhibition of bone resorptive activity. We now report that micromolar concentrations of the divalent cation, Ni2+, elicited rapid and concentration-dependent elevations of cytosolic [Ca2+]. The peak change in cytosolic [Ca2+] increased monotonically with the application of [Ni2+] in the 50-5,000 microM range in solutions containing 1.25 mM-[Ca2+] and 0.8 mM-[Mg2+]. The resulting concentration-response function suggested Ni(2+)-induced activation of a single class of binding site (Hill coefficient = 1). The triggering process also exhibited a concentration-dependent inactivation in which conditioning Ni2+ applications in the range 5-1,500 microM-[Ni2+] inhibited subsequent responses to a maximally effective [Ni2+] of 5,000 microM. Ni(2+)-induced cytosolic [Ca2+] responses were not dependent on extracellular [Ca2+]. Thus, when 5,000 microM-[Ni2+] was applied to osteoclasts in Ca(2+)-free, ethylene glycol bis-(aminoethyl ether) tetraacetic acid (EGTA)-containing medium (< or = 5 nM-[Ca2+] and 0.8 mM-[Mg2+]), cytosolic [Ca2+] responses resembled those obtained in the presence of 1.25 mM-[Ca2+]. Prior depletion of intracellular Ca2+ stores by ionomycin prevented Ni(2+)-induced cytosolic [Ca2+] responses, suggesting a major role for intracellular Ca2+ redistribution in the response to Ni2+. The effects of Ni2+ were also modulated by the extracellular concentration of the divalent cations, Ca2+ and Mg2+. When these cations were not added to the culture medium (0 microM-[Ca2+] and [Mg2+]), even low [Ni2+] ranging between 5 pM and 50 microM elicited progressively larger cytosolic [Ca2+] transients. However, the response magnitude decreased at higher, 250-5,000 microM-[Ni2+], resulting in a "hooked" concentration-response curve. Furthermore, increasing extracellular [Mg2+] or [Ca2+] (0-1 mM) diminished the response to 50 microM-[Ni2+], a concentration on the rising phase of the "hook." Similar increases (0-10 mM) in extracellular [Mg2+] or [Ca2+] increased the response to 5,000 microM-[Ni2+], a concentration on the falling phase of the "hook". These findings are consistent with the existence of a membrane receptor strongly sensitive to Ni2+ as well as the divalent cations, Ca2+ and Mg2+. Receptor occupancy apparently activates intracellular Ca2+ release followed by inactivation. Furthermore, repriming is independent of intracellular Ca2+ stores, suggesting that such inactivation operates at a transduction step between receptor occupancy and intracellular Ca2+ release.
first_indexed 2024-03-07T01:13:13Z
format Journal article
id oxford-uuid:8dc2d9ff-13e6-4127-b8c9-d512c4e4af97
institution University of Oxford
language English
last_indexed 2024-03-07T01:13:13Z
publishDate 1993
record_format dspace
spelling oxford-uuid:8dc2d9ff-13e6-4127-b8c9-d512c4e4af972022-03-26T22:53:14ZActivation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:8dc2d9ff-13e6-4127-b8c9-d512c4e4af97EnglishSymplectic Elements at Oxford1993Shankar, VBax, CBax, BAlam, AMoonga, BSimon, BPazianas, MHuang, CZaidi, MEarlier studies have demonstrated that a high (mM) extracellular Ca2+ concentration triggers intracellular [Ca2+] signals with a consequent inhibition of bone resorptive activity. We now report that micromolar concentrations of the divalent cation, Ni2+, elicited rapid and concentration-dependent elevations of cytosolic [Ca2+]. The peak change in cytosolic [Ca2+] increased monotonically with the application of [Ni2+] in the 50-5,000 microM range in solutions containing 1.25 mM-[Ca2+] and 0.8 mM-[Mg2+]. The resulting concentration-response function suggested Ni(2+)-induced activation of a single class of binding site (Hill coefficient = 1). The triggering process also exhibited a concentration-dependent inactivation in which conditioning Ni2+ applications in the range 5-1,500 microM-[Ni2+] inhibited subsequent responses to a maximally effective [Ni2+] of 5,000 microM. Ni(2+)-induced cytosolic [Ca2+] responses were not dependent on extracellular [Ca2+]. Thus, when 5,000 microM-[Ni2+] was applied to osteoclasts in Ca(2+)-free, ethylene glycol bis-(aminoethyl ether) tetraacetic acid (EGTA)-containing medium (< or = 5 nM-[Ca2+] and 0.8 mM-[Mg2+]), cytosolic [Ca2+] responses resembled those obtained in the presence of 1.25 mM-[Ca2+]. Prior depletion of intracellular Ca2+ stores by ionomycin prevented Ni(2+)-induced cytosolic [Ca2+] responses, suggesting a major role for intracellular Ca2+ redistribution in the response to Ni2+. The effects of Ni2+ were also modulated by the extracellular concentration of the divalent cations, Ca2+ and Mg2+. When these cations were not added to the culture medium (0 microM-[Ca2+] and [Mg2+]), even low [Ni2+] ranging between 5 pM and 50 microM elicited progressively larger cytosolic [Ca2+] transients. However, the response magnitude decreased at higher, 250-5,000 microM-[Ni2+], resulting in a "hooked" concentration-response curve. Furthermore, increasing extracellular [Mg2+] or [Ca2+] (0-1 mM) diminished the response to 50 microM-[Ni2+], a concentration on the rising phase of the "hook." Similar increases (0-10 mM) in extracellular [Mg2+] or [Ca2+] increased the response to 5,000 microM-[Ni2+], a concentration on the falling phase of the "hook". These findings are consistent with the existence of a membrane receptor strongly sensitive to Ni2+ as well as the divalent cations, Ca2+ and Mg2+. Receptor occupancy apparently activates intracellular Ca2+ release followed by inactivation. Furthermore, repriming is independent of intracellular Ca2+ stores, suggesting that such inactivation operates at a transduction step between receptor occupancy and intracellular Ca2+ release.
spellingShingle Shankar, V
Bax, C
Bax, B
Alam, A
Moonga, B
Simon, B
Pazianas, M
Huang, C
Zaidi, M
Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.
title Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.
title_full Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.
title_fullStr Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.
title_full_unstemmed Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.
title_short Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.
title_sort activation of the ca2 receptor on the osteoclast by ni2 elicits cytosolic ca2 signals evidence for receptor activation and inactivation intracellular ca2 redistribution and divalent cation modulation
work_keys_str_mv AT shankarv activationoftheca2receptorontheosteoclastbyni2elicitscytosolicca2signalsevidenceforreceptoractivationandinactivationintracellularca2redistributionanddivalentcationmodulation
AT baxc activationoftheca2receptorontheosteoclastbyni2elicitscytosolicca2signalsevidenceforreceptoractivationandinactivationintracellularca2redistributionanddivalentcationmodulation
AT baxb activationoftheca2receptorontheosteoclastbyni2elicitscytosolicca2signalsevidenceforreceptoractivationandinactivationintracellularca2redistributionanddivalentcationmodulation
AT alama activationoftheca2receptorontheosteoclastbyni2elicitscytosolicca2signalsevidenceforreceptoractivationandinactivationintracellularca2redistributionanddivalentcationmodulation
AT moongab activationoftheca2receptorontheosteoclastbyni2elicitscytosolicca2signalsevidenceforreceptoractivationandinactivationintracellularca2redistributionanddivalentcationmodulation
AT simonb activationoftheca2receptorontheosteoclastbyni2elicitscytosolicca2signalsevidenceforreceptoractivationandinactivationintracellularca2redistributionanddivalentcationmodulation
AT pazianasm activationoftheca2receptorontheosteoclastbyni2elicitscytosolicca2signalsevidenceforreceptoractivationandinactivationintracellularca2redistributionanddivalentcationmodulation
AT huangc activationoftheca2receptorontheosteoclastbyni2elicitscytosolicca2signalsevidenceforreceptoractivationandinactivationintracellularca2redistributionanddivalentcationmodulation
AT zaidim activationoftheca2receptorontheosteoclastbyni2elicitscytosolicca2signalsevidenceforreceptoractivationandinactivationintracellularca2redistributionanddivalentcationmodulation