The ATLAS semiconductor tracker end-cap module
The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker (SCT) end-caps have a total of about 3 million electronics channels each reading out every...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2007
|
_version_ | 1797081357215596544 |
---|---|
author | Abdesselam, A Adkin, P Allport, P Alonso, J Andricek, L Anghinolfi, F Antonov, A Apsimon, R Atkinson, T Batchelor, L Bates, R Beck, G Becker, H Bell, P Bell, W Beneš, P Bernabeu, J Bethke, S Bizzell, J Blocki, J Broklová, Z Brož, J Bohm, J Booker, P Bright, G |
author_facet | Abdesselam, A Adkin, P Allport, P Alonso, J Andricek, L Anghinolfi, F Antonov, A Apsimon, R Atkinson, T Batchelor, L Bates, R Beck, G Becker, H Bell, P Bell, W Beneš, P Bernabeu, J Bethke, S Bizzell, J Blocki, J Broklová, Z Brož, J Bohm, J Booker, P Bright, G |
author_sort | Abdesselam, A |
collection | OXFORD |
description | The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 μ s buffer. The highest anticipated dose after 10 years operation is 1.4 × 1014 cm- 2 in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area ∼ 70 cm2, each having 2 × 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500 e- equivalent noise charge (ENC) rising to only 1800 e- ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 μ m (r φ) resolution perpendicular to the strip directions or 580 μ m radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40-50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved. © 2007 Elsevier B.V. All rights reserved. |
first_indexed | 2024-03-07T01:13:22Z |
format | Journal article |
id | oxford-uuid:8dcff8e5-843e-4867-849f-83f23eca02de |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T01:13:22Z |
publishDate | 2007 |
record_format | dspace |
spelling | oxford-uuid:8dcff8e5-843e-4867-849f-83f23eca02de2022-03-26T22:53:32ZThe ATLAS semiconductor tracker end-cap moduleJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:8dcff8e5-843e-4867-849f-83f23eca02deEnglishSymplectic Elements at Oxford2007Abdesselam, AAdkin, PAllport, PAlonso, JAndricek, LAnghinolfi, FAntonov, AApsimon, RAtkinson, TBatchelor, LBates, RBeck, GBecker, HBell, PBell, WBeneš, PBernabeu, JBethke, SBizzell, JBlocki, JBroklová, ZBrož, JBohm, JBooker, PBright, GThe challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 μ s buffer. The highest anticipated dose after 10 years operation is 1.4 × 1014 cm- 2 in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area ∼ 70 cm2, each having 2 × 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500 e- equivalent noise charge (ENC) rising to only 1800 e- ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 μ m (r φ) resolution perpendicular to the strip directions or 580 μ m radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40-50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved. © 2007 Elsevier B.V. All rights reserved. |
spellingShingle | Abdesselam, A Adkin, P Allport, P Alonso, J Andricek, L Anghinolfi, F Antonov, A Apsimon, R Atkinson, T Batchelor, L Bates, R Beck, G Becker, H Bell, P Bell, W Beneš, P Bernabeu, J Bethke, S Bizzell, J Blocki, J Broklová, Z Brož, J Bohm, J Booker, P Bright, G The ATLAS semiconductor tracker end-cap module |
title | The ATLAS semiconductor tracker end-cap module |
title_full | The ATLAS semiconductor tracker end-cap module |
title_fullStr | The ATLAS semiconductor tracker end-cap module |
title_full_unstemmed | The ATLAS semiconductor tracker end-cap module |
title_short | The ATLAS semiconductor tracker end-cap module |
title_sort | atlas semiconductor tracker end cap module |
work_keys_str_mv | AT abdesselama theatlassemiconductortrackerendcapmodule AT adkinp theatlassemiconductortrackerendcapmodule AT allportp theatlassemiconductortrackerendcapmodule AT alonsoj theatlassemiconductortrackerendcapmodule AT andricekl theatlassemiconductortrackerendcapmodule AT anghinolfif theatlassemiconductortrackerendcapmodule AT antonova theatlassemiconductortrackerendcapmodule AT apsimonr theatlassemiconductortrackerendcapmodule AT atkinsont theatlassemiconductortrackerendcapmodule AT batchelorl theatlassemiconductortrackerendcapmodule AT batesr theatlassemiconductortrackerendcapmodule AT beckg theatlassemiconductortrackerendcapmodule AT beckerh theatlassemiconductortrackerendcapmodule AT bellp theatlassemiconductortrackerendcapmodule AT bellw theatlassemiconductortrackerendcapmodule AT benesp theatlassemiconductortrackerendcapmodule AT bernabeuj theatlassemiconductortrackerendcapmodule AT bethkes theatlassemiconductortrackerendcapmodule AT bizzellj theatlassemiconductortrackerendcapmodule AT blockij theatlassemiconductortrackerendcapmodule AT broklovaz theatlassemiconductortrackerendcapmodule AT brozj theatlassemiconductortrackerendcapmodule AT bohmj theatlassemiconductortrackerendcapmodule AT bookerp theatlassemiconductortrackerendcapmodule AT brightg theatlassemiconductortrackerendcapmodule AT abdesselama atlassemiconductortrackerendcapmodule AT adkinp atlassemiconductortrackerendcapmodule AT allportp atlassemiconductortrackerendcapmodule AT alonsoj atlassemiconductortrackerendcapmodule AT andricekl atlassemiconductortrackerendcapmodule AT anghinolfif atlassemiconductortrackerendcapmodule AT antonova atlassemiconductortrackerendcapmodule AT apsimonr atlassemiconductortrackerendcapmodule AT atkinsont atlassemiconductortrackerendcapmodule AT batchelorl atlassemiconductortrackerendcapmodule AT batesr atlassemiconductortrackerendcapmodule AT beckg atlassemiconductortrackerendcapmodule AT beckerh atlassemiconductortrackerendcapmodule AT bellp atlassemiconductortrackerendcapmodule AT bellw atlassemiconductortrackerendcapmodule AT benesp atlassemiconductortrackerendcapmodule AT bernabeuj atlassemiconductortrackerendcapmodule AT bethkes atlassemiconductortrackerendcapmodule AT bizzellj atlassemiconductortrackerendcapmodule AT blockij atlassemiconductortrackerendcapmodule AT broklovaz atlassemiconductortrackerendcapmodule AT brozj atlassemiconductortrackerendcapmodule AT bohmj atlassemiconductortrackerendcapmodule AT bookerp atlassemiconductortrackerendcapmodule AT brightg atlassemiconductortrackerendcapmodule |