Probabilistic modelling of morphologically rich languages
<p>This thesis investigates how the sub-structure of words can be accounted for in probabilistic models of language. Such models play an important role in natural language processing tasks such as translation or speech recognition, but often rely on the simplistic assumption that words are opa...
Hovedforfatter: | Botha, J |
---|---|
Andre forfattere: | Blunsom, P |
Format: | Thesis |
Sprog: | English |
Udgivet: |
2014
|
Fag: |
Lignende værker
-
Category-theoretic quantitative compositional distributional models of natural language semantics
af: Grefenstette, E, et al.
Udgivet: (2013) -
Deep learning for reading and understanding language
af: Kočiský, T
Udgivet: (2017) -
The handbook of computational linguistics and natural language processing /
af: Clark, Alexander (Alexander Simon), et al.
Udgivet: (2010) -
Distributed representations for compositional semantics
af: Hermann, K
Udgivet: (2014) -
Product feature extraction using natural language processing techniques /
af: Niloufar Salehi Dastjerdi, 1985-, et al.
Udgivet: (2012)