Probabilistic modelling of morphologically rich languages
<p>This thesis investigates how the sub-structure of words can be accounted for in probabilistic models of language. Such models play an important role in natural language processing tasks such as translation or speech recognition, but often rely on the simplistic assumption that words are opa...
Autor Principal: | Botha, J |
---|---|
Outros autores: | Blunsom, P |
Formato: | Thesis |
Idioma: | English |
Publicado: |
2014
|
Subjects: |
Títulos similares
-
Category-theoretic quantitative compositional distributional models of natural language semantics
por: Grefenstette, E, et al.
Publicado: (2013) -
Deep learning for reading and understanding language
por: Kočiský, T
Publicado: (2017) -
The handbook of computational linguistics and natural language processing /
por: Clark, Alexander (Alexander Simon), et al.
Publicado: (2010) -
Distributed representations for compositional semantics
por: Hermann, K
Publicado: (2014) -
Product feature extraction using natural language processing techniques /
por: Niloufar Salehi Dastjerdi, 1985-, et al.
Publicado: (2012)