Cohesive zone modelling of hydrogen assisted fatigue crack growth: the role of trapping

<p>We investigate the influence of microstructural traps in hydrogen-assisted fatigue crack growth. To this end, a new formulation combining multi-trap stress-assisted diffusion, mechanism-based strain gradient plasticity and a hydrogen- and fatigue-dependent cohesive zone model is presented a...

Full description

Bibliographic Details
Main Authors: Fernández-Sousa, R, Betegón, C, Martínez-Pañeda, E
Format: Journal article
Language:English
Published: Elsevier 2022
_version_ 1797112716781944832
author Fernández-Sousa, R
Betegón, C
Martínez-Pañeda, E
author_facet Fernández-Sousa, R
Betegón, C
Martínez-Pañeda, E
author_sort Fernández-Sousa, R
collection OXFORD
description <p>We investigate the influence of microstructural traps in hydrogen-assisted fatigue crack growth. To this end, a new formulation combining multi-trap stress-assisted diffusion, mechanism-based strain gradient plasticity and a hydrogen- and fatigue-dependent cohesive zone model is presented and numerically implemented. The results show that the ratio of loading frequency to effective diffusivity governs fatigue crack growth behaviour. Increasing the density of&nbsp;<em>beneficial</em>&nbsp;traps, not involved in the fracture process, results in lower fatigue crack growth rates. The combinations of loading frequency and carbide trap densities that minimise embrittlement susceptibility are identified, providing the foundation for a rational design of hydrogen-resistant alloys.</p>
first_indexed 2024-03-07T08:29:21Z
format Journal article
id oxford-uuid:8e61d253-24d1-4d2a-981a-afc001bfee7f
institution University of Oxford
language English
last_indexed 2024-03-07T08:29:21Z
publishDate 2022
publisher Elsevier
record_format dspace
spelling oxford-uuid:8e61d253-24d1-4d2a-981a-afc001bfee7f2024-03-01T06:33:06ZCohesive zone modelling of hydrogen assisted fatigue crack growth: the role of trappingJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:8e61d253-24d1-4d2a-981a-afc001bfee7fEnglishSymplectic ElementsElsevier2022Fernández-Sousa, RBetegón, CMartínez-Pañeda, E<p>We investigate the influence of microstructural traps in hydrogen-assisted fatigue crack growth. To this end, a new formulation combining multi-trap stress-assisted diffusion, mechanism-based strain gradient plasticity and a hydrogen- and fatigue-dependent cohesive zone model is presented and numerically implemented. The results show that the ratio of loading frequency to effective diffusivity governs fatigue crack growth behaviour. Increasing the density of&nbsp;<em>beneficial</em>&nbsp;traps, not involved in the fracture process, results in lower fatigue crack growth rates. The combinations of loading frequency and carbide trap densities that minimise embrittlement susceptibility are identified, providing the foundation for a rational design of hydrogen-resistant alloys.</p>
spellingShingle Fernández-Sousa, R
Betegón, C
Martínez-Pañeda, E
Cohesive zone modelling of hydrogen assisted fatigue crack growth: the role of trapping
title Cohesive zone modelling of hydrogen assisted fatigue crack growth: the role of trapping
title_full Cohesive zone modelling of hydrogen assisted fatigue crack growth: the role of trapping
title_fullStr Cohesive zone modelling of hydrogen assisted fatigue crack growth: the role of trapping
title_full_unstemmed Cohesive zone modelling of hydrogen assisted fatigue crack growth: the role of trapping
title_short Cohesive zone modelling of hydrogen assisted fatigue crack growth: the role of trapping
title_sort cohesive zone modelling of hydrogen assisted fatigue crack growth the role of trapping
work_keys_str_mv AT fernandezsousar cohesivezonemodellingofhydrogenassistedfatiguecrackgrowththeroleoftrapping
AT betegonc cohesivezonemodellingofhydrogenassistedfatiguecrackgrowththeroleoftrapping
AT martinezpanedae cohesivezonemodellingofhydrogenassistedfatiguecrackgrowththeroleoftrapping