Probing galaxy formation with high energy gamma-rays

We discuss how measurements of the absorption of gamma -rays from GeV to TeV energies via pair production on the extragalactic background light (EBL) can probe important issues in galaxy formation. We use semi-analytic models (SAMs) of galaxy formation, set within the hierarchical structure formatio...

Full description

Bibliographic Details
Main Authors: Primack, JR, Somerville, R, Bullock, J, Devriendt, J
Format: Conference item
Published: 2001
Description
Summary:We discuss how measurements of the absorption of gamma -rays from GeV to TeV energies via pair production on the extragalactic background light (EBL) can probe important issues in galaxy formation. We use semi-analytic models (SAMs) of galaxy formation, set within the hierarchical structure formation scenario, to obtain predictions of the EEL from 0.1 to 1000 mum. SAMs incorporate simplified physical treatments of the key processes of galaxy formation - including gravitational collapse and merging of dark matter halos, gas cooling and dissipation, star formation, supernova feedback and metal production - and have been shown to reproduce key observations at low and high redshift. Here we also introduce improved modelling of the spectral energy distributions in the mid-to-far-IR arising from emission by dust grains. Assuming a flat ACDM cosmology with Omega (m) = 0.3 and Hubble parameter h = 0.65, we investigate the consequences of variations in input assumptions such as the stellar initial mass function (IMF) and the efficiency of converting cold gas into stars. We conclude that observational studies of the absorption of gamma -rays with energies from similar to 10 Gev to similar to 10 TeV will help to determine the EEL, and also help to explain its origin by constraining some of the most uncertain features of galaxy formation theory, including the IMF, the history of star formation, and the reprocessing of light by dust.