Pseudo-marginal Hamiltonian Monte Carlo
Bayesian inference in the presence of an intractable likelihood function is computationally challenging. When following a Markov chain Monte Carlo (MCMC) approach to approximate the posterior distribution in this context, one typically either uses MCMC schemes which target the joint posterior of the...
Главные авторы: | Alenlov, J, Doucet, A, Lindsten, F |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Journal of Machine Learning Research
2021
|
Схожие документы
-
Nonparametric Hamiltonian Monte Carlo
по: Mak, C, и др.
Опубликовано: (2021) -
Interacting particle Markov chain Monte Carlo
по: Doucet, A, и др.
Опубликовано: (2016) -
Quantum dynamical Hamiltonian Monte Carlo
по: Owen Lockwood, и др.
Опубликовано: (2024-08-01) -
Shadow Magnetic Hamiltonian Monte Carlo
по: Wilson Tsakane Mongwe, и др.
Опубликовано: (2022-01-01) -
Adaptive Magnetic Hamiltonian Monte Carlo
по: Wilson Tsakane Mongwe, и др.
Опубликовано: (2021-01-01)