Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts
We present a novel approach incorporating transformer-based language models into infectious disease modelling. Text-derived features are quantified by tracking high-density clusters of sentence-level representations of Reddit posts within specific US states’ COVID-19 subreddits. We benchmark these c...
المؤلفون الرئيسيون: | Drinkall, F, Zohren, S, Pierrehumbert, JB |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Association for Computational Linguistics
2022
|
مواد مشابهة
-
Predicting COVID-19 cases using Reddit posts and other online resources
حسب: Drinkall, F, وآخرون
منشور في: (2021) -
Time machine GPT
حسب: Drinkall, F, وآخرون
منشور في: (2024) -
Regional forecasting of COVID-19 caseload by non-parametric regression: a VAR epidemiological model
حسب: Aaron C Shang, وآخرون
منشور في: (2021-02-01) -
Unsupervised detection of contextualized embedding bias with application to ideology
حسب: Hofmann, V, وآخرون
منشور في: (2022) -
Asymptomatic Cases, the Hidden Challenge in Predicting COVID-19 Caseload Increases
حسب: Brett Snider, وآخرون
منشور في: (2021-04-01)