Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts
We present a novel approach incorporating transformer-based language models into infectious disease modelling. Text-derived features are quantified by tracking high-density clusters of sentence-level representations of Reddit posts within specific US states’ COVID-19 subreddits. We benchmark these c...
Hauptverfasser: | Drinkall, F, Zohren, S, Pierrehumbert, JB |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
Association for Computational Linguistics
2022
|
Ähnliche Einträge
Ähnliche Einträge
-
Predicting COVID-19 cases using Reddit posts and other online resources
von: Drinkall, F, et al.
Veröffentlicht: (2021) -
Time machine GPT
von: Drinkall, F, et al.
Veröffentlicht: (2024) -
Regional forecasting of COVID-19 caseload by non-parametric regression: a VAR epidemiological model
von: Aaron C Shang, et al.
Veröffentlicht: (2021-02-01) -
Unsupervised detection of contextualized embedding bias with application to ideology
von: Hofmann, V, et al.
Veröffentlicht: (2022) -
Asymptomatic Cases, the Hidden Challenge in Predicting COVID-19 Caseload Increases
von: Brett Snider, et al.
Veröffentlicht: (2021-04-01)