Linear programming algorithms for detecting separated data in binary logistic regression models
This thesis is a study of the detection of separation among the sample points in binary logistic regression models. We propose a new algorithm for detecting separation and demonstrate empirically that it can be computed fast enough to be used routinely as part of the fitting process for logistic reg...
المؤلف الرئيسي: | Konis, K |
---|---|
مؤلفون آخرون: | Ripley, B |
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2007
|
الموضوعات: |
مواد مشابهة
-
On auxiliary variables and many-core architectures in computational statistics
حسب: Lee, A
منشور في: (2011) -
Markov fields and log-linear interaction models for contingency tables
حسب: Darroch, J, وآخرون
منشور في: (1980) -
Reweighting methods in high dimensional regression
حسب: Fang, Z
منشور في: (2012) -
Synonymous codon usage influences the local protein structure observed
حسب: Saunders, R, وآخرون
منشور في: (2010) -
Models and software for improving the profitability of pharmaceutical research
حسب: Qu, S
منشور في: (2011)