Linear programming algorithms for detecting separated data in binary logistic regression models
This thesis is a study of the detection of separation among the sample points in binary logistic regression models. We propose a new algorithm for detecting separation and demonstrate empirically that it can be computed fast enough to be used routinely as part of the fitting process for logistic reg...
Autore principale: | Konis, K |
---|---|
Altri autori: | Ripley, B |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
2007
|
Soggetti: |
Documenti analoghi
Documenti analoghi
-
On auxiliary variables and many-core architectures in computational statistics
di: Lee, A
Pubblicazione: (2011) -
Markov fields and log-linear interaction models for contingency tables
di: Darroch, J, et al.
Pubblicazione: (1980) -
Reweighting methods in high dimensional regression
di: Fang, Z
Pubblicazione: (2012) -
Synonymous codon usage influences the local protein structure observed
di: Saunders, R, et al.
Pubblicazione: (2010) -
Models and software for improving the profitability of pharmaceutical research
di: Qu, S
Pubblicazione: (2011)