Linear programming algorithms for detecting separated data in binary logistic regression models
This thesis is a study of the detection of separation among the sample points in binary logistic regression models. We propose a new algorithm for detecting separation and demonstrate empirically that it can be computed fast enough to be used routinely as part of the fitting process for logistic reg...
Главный автор: | Konis, K |
---|---|
Другие авторы: | Ripley, B |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2007
|
Предметы: |
Схожие документы
-
On auxiliary variables and many-core architectures in computational statistics
по: Lee, A
Опубликовано: (2011) -
Markov fields and log-linear interaction models for contingency tables
по: Darroch, J, и др.
Опубликовано: (1980) -
Reweighting methods in high dimensional regression
по: Fang, Z
Опубликовано: (2012) -
Synonymous codon usage influences the local protein structure observed
по: Saunders, R, и др.
Опубликовано: (2010) -
Models and software for improving the profitability of pharmaceutical research
по: Qu, S
Опубликовано: (2011)