Linear programming algorithms for detecting separated data in binary logistic regression models
This thesis is a study of the detection of separation among the sample points in binary logistic regression models. We propose a new algorithm for detecting separation and demonstrate empirically that it can be computed fast enough to be used routinely as part of the fitting process for logistic reg...
Päätekijä: | Konis, K |
---|---|
Muut tekijät: | Ripley, B |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
2007
|
Aiheet: |
Samankaltaisia teoksia
-
On auxiliary variables and many-core architectures in computational statistics
Tekijä: Lee, A
Julkaistu: (2011) -
Markov fields and log-linear interaction models for contingency tables
Tekijä: Darroch, J, et al.
Julkaistu: (1980) -
Reweighting methods in high dimensional regression
Tekijä: Fang, Z
Julkaistu: (2012) -
Synonymous codon usage influences the local protein structure observed
Tekijä: Saunders, R, et al.
Julkaistu: (2010) -
Models and software for improving the profitability of pharmaceutical research
Tekijä: Qu, S
Julkaistu: (2011)