Hierarchical attentive recurrent tracking
Class-agnostic object tracking is particularly difficult in cluttered environments as target specific discriminative models cannot be learned a priori. Inspired by how the human visual cortex employs spatial attention and separate “where” and “what” processing pathways to actively suppress irrelevan...
主要な著者: | Kosiorek, A, Bewley, A, Posner, H |
---|---|
フォーマット: | Conference item |
出版事項: |
Neural Information Processing Systems
2018
|
類似資料
-
Deep tracking in the wild: End-to-end tracking using recurrent neural networks
著者:: Dequaire, J, 等
出版事項: (2017) -
Attentional control, rumination and recurrence of depression
著者:: Figueroa, C, 等
出版事項: (2019) -
End-to-end tracking and semantic segmentation using recurrent neural networks
著者:: Ondruska, P, 等
出版事項: (2016) -
Neural stethoscopes: Unifying analytic, auxiliary and adversarial network probing
著者:: Fuchs, F, 等
出版事項: (2018) -
Hierarchical feature attention with bottleneck attention modules for multi-branch classification
著者:: Gan, Ryan
出版事項: (2024)