Hierarchical attentive recurrent tracking
Class-agnostic object tracking is particularly difficult in cluttered environments as target specific discriminative models cannot be learned a priori. Inspired by how the human visual cortex employs spatial attention and separate “where” and “what” processing pathways to actively suppress irrelevan...
Principais autores: | Kosiorek, A, Bewley, A, Posner, H |
---|---|
Formato: | Conference item |
Publicado em: |
Neural Information Processing Systems
2018
|
Registros relacionados
-
Deep tracking in the wild: End-to-end tracking using recurrent neural networks
por: Dequaire, J, et al.
Publicado em: (2017) -
Attentional control, rumination and recurrence of depression
por: Figueroa, C, et al.
Publicado em: (2019) -
End-to-end tracking and semantic segmentation using recurrent neural networks
por: Ondruska, P, et al.
Publicado em: (2016) -
Neural stethoscopes: Unifying analytic, auxiliary and adversarial network probing
por: Fuchs, F, et al.
Publicado em: (2018) -
Hierarchical feature attention with bottleneck attention modules for multi-branch classification
por: Gan, Ryan
Publicado em: (2024)