Hierarchical attentive recurrent tracking
Class-agnostic object tracking is particularly difficult in cluttered environments as target specific discriminative models cannot be learned a priori. Inspired by how the human visual cortex employs spatial attention and separate “where” and “what” processing pathways to actively suppress irrelevan...
Главные авторы: | Kosiorek, A, Bewley, A, Posner, H |
---|---|
Формат: | Conference item |
Опубликовано: |
Neural Information Processing Systems
2018
|
Схожие документы
-
Deep tracking in the wild: End-to-end tracking using recurrent neural networks
по: Dequaire, J, и др.
Опубликовано: (2017) -
End-to-end tracking and semantic segmentation using recurrent neural networks
по: Ondruska, P, и др.
Опубликовано: (2016) -
Attentional control, rumination and recurrence of depression
по: Figueroa, C, и др.
Опубликовано: (2019) -
Neural stethoscopes: Unifying analytic, auxiliary and adversarial network probing
по: Fuchs, F, и др.
Опубликовано: (2018) -
Hierarchical feature attention with bottleneck attention modules for multi-branch classification
по: Gan, Ryan
Опубликовано: (2024)