The statistical complexity of early-stopped mirror descent
Recently there has been a surge of interest in understanding implicit regularization properties of iterative gradient-based optimization algorithms. In this paper, we study the statistical guarantees on the excess risk achieved by early-stopped unconstrained mirror descent algorithms applied to the...
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Oxford University Press
2023
|
_version_ | 1797111936224067584 |
---|---|
author | Kanade, V Rebeschini, P Vaškevičius, T |
author_facet | Kanade, V Rebeschini, P Vaškevičius, T |
author_sort | Kanade, V |
collection | OXFORD |
description | Recently there has been a surge of interest in understanding implicit regularization properties of iterative gradient-based optimization algorithms. In this paper, we study the statistical guarantees on the excess risk achieved by early-stopped unconstrained mirror descent algorithms applied to the unregularized empirical risk. We consider the set-up of learning linear models and kernel methods for strongly convex and Lipschitz loss functions while imposing only boundedness conditions on the unknown data-generating mechanism. By completing an inequality that characterizes convexity for the squared loss, we identify an intrinsic link between offset Rademacher complexities and potential-based convergence analysis of mirror descent methods. Our observation immediately yields excess risk guarantees for the path traced by the iterates of mirror descent in terms of offset complexities of certain function classes depending only on the choice of the mirror map, initialization point, step size and the number of iterations. We apply our theory to recover, in a clean and elegant manner via rather short proofs, some of the recent results in the implicit regularization literature while also showing how to improve upon them in some settings. |
first_indexed | 2024-03-07T08:17:22Z |
format | Journal article |
id | oxford-uuid:90240064-bf6a-405f-9a4c-f65e4220c038 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T08:17:22Z |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | dspace |
spelling | oxford-uuid:90240064-bf6a-405f-9a4c-f65e4220c0382024-01-05T12:18:37ZThe statistical complexity of early-stopped mirror descentJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:90240064-bf6a-405f-9a4c-f65e4220c038EnglishSymplectic ElementsOxford University Press2023Kanade, VRebeschini, PVaškevičius, TRecently there has been a surge of interest in understanding implicit regularization properties of iterative gradient-based optimization algorithms. In this paper, we study the statistical guarantees on the excess risk achieved by early-stopped unconstrained mirror descent algorithms applied to the unregularized empirical risk. We consider the set-up of learning linear models and kernel methods for strongly convex and Lipschitz loss functions while imposing only boundedness conditions on the unknown data-generating mechanism. By completing an inequality that characterizes convexity for the squared loss, we identify an intrinsic link between offset Rademacher complexities and potential-based convergence analysis of mirror descent methods. Our observation immediately yields excess risk guarantees for the path traced by the iterates of mirror descent in terms of offset complexities of certain function classes depending only on the choice of the mirror map, initialization point, step size and the number of iterations. We apply our theory to recover, in a clean and elegant manner via rather short proofs, some of the recent results in the implicit regularization literature while also showing how to improve upon them in some settings. |
spellingShingle | Kanade, V Rebeschini, P Vaškevičius, T The statistical complexity of early-stopped mirror descent |
title | The statistical complexity of early-stopped mirror descent |
title_full | The statistical complexity of early-stopped mirror descent |
title_fullStr | The statistical complexity of early-stopped mirror descent |
title_full_unstemmed | The statistical complexity of early-stopped mirror descent |
title_short | The statistical complexity of early-stopped mirror descent |
title_sort | statistical complexity of early stopped mirror descent |
work_keys_str_mv | AT kanadev thestatisticalcomplexityofearlystoppedmirrordescent AT rebeschinip thestatisticalcomplexityofearlystoppedmirrordescent AT vaskeviciust thestatisticalcomplexityofearlystoppedmirrordescent AT kanadev statisticalcomplexityofearlystoppedmirrordescent AT rebeschinip statisticalcomplexityofearlystoppedmirrordescent AT vaskeviciust statisticalcomplexityofearlystoppedmirrordescent |