4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic b-splines

4D-PET reconstruction has the potential to significantly increase the signal-to-noise ratio in dynamic PET by fitting smooth temporal functions during the reconstruction. However, the optimal choice of temporal function remains an open question. A 4D-PET reconstruction algorithm using adaptive-knot...

Cur síos iomlán

Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: Ralli, G, McGowan, D, Chappell, M, Sharma, R, Higgins, G, Fenwick, J
Formáid: Conference item
Foilsithe / Cruthaithe: Institute of Electrical and Electronics Engineers 2017
_version_ 1826284931750297600
author Ralli, G
McGowan, D
Chappell, M
Sharma, R
Higgins, G
Fenwick, J
author_facet Ralli, G
McGowan, D
Chappell, M
Sharma, R
Higgins, G
Fenwick, J
author_sort Ralli, G
collection OXFORD
description 4D-PET reconstruction has the potential to significantly increase the signal-to-noise ratio in dynamic PET by fitting smooth temporal functions during the reconstruction. However, the optimal choice of temporal function remains an open question. A 4D-PET reconstruction algorithm using adaptive-knot cubic B-splines is proposed. Using realistic Monte-Carlo simulated data from a digital patient phantom representing an [18-F]-FMISO-PET scan of a non-small cell lung cancer patient, this method was compared to a spectral model based 4D-PET reconstruction and the conventional MLEM and MAP algorithms. Within the entire patient region the proposed algorithm produced the best bias-noise trade-off, while within the tumor region the spline- and spectral model-based reconstructions gave comparable results.
first_indexed 2024-03-07T01:21:15Z
format Conference item
id oxford-uuid:906d68a6-2bc0-4bc7-b62c-73dfa3c1f8f8
institution University of Oxford
last_indexed 2024-03-07T01:21:15Z
publishDate 2017
publisher Institute of Electrical and Electronics Engineers
record_format dspace
spelling oxford-uuid:906d68a6-2bc0-4bc7-b62c-73dfa3c1f8f82022-03-26T23:11:29Z4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic b-splinesConference itemhttp://purl.org/coar/resource_type/c_5794uuid:906d68a6-2bc0-4bc7-b62c-73dfa3c1f8f8Symplectic Elements at OxfordInstitute of Electrical and Electronics Engineers2017Ralli, GMcGowan, DChappell, MSharma, RHiggins, GFenwick, J4D-PET reconstruction has the potential to significantly increase the signal-to-noise ratio in dynamic PET by fitting smooth temporal functions during the reconstruction. However, the optimal choice of temporal function remains an open question. A 4D-PET reconstruction algorithm using adaptive-knot cubic B-splines is proposed. Using realistic Monte-Carlo simulated data from a digital patient phantom representing an [18-F]-FMISO-PET scan of a non-small cell lung cancer patient, this method was compared to a spectral model based 4D-PET reconstruction and the conventional MLEM and MAP algorithms. Within the entire patient region the proposed algorithm produced the best bias-noise trade-off, while within the tumor region the spline- and spectral model-based reconstructions gave comparable results.
spellingShingle Ralli, G
McGowan, D
Chappell, M
Sharma, R
Higgins, G
Fenwick, J
4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic b-splines
title 4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic b-splines
title_full 4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic b-splines
title_fullStr 4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic b-splines
title_full_unstemmed 4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic b-splines
title_short 4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic b-splines
title_sort 4d pet reconstruction of dynamic non small cell lung cancer 18 f fmiso pet data using adaptive knot cubic b splines
work_keys_str_mv AT rallig 4dpetreconstructionofdynamicnonsmallcelllungcancer18ffmisopetdatausingadaptiveknotcubicbsplines
AT mcgowand 4dpetreconstructionofdynamicnonsmallcelllungcancer18ffmisopetdatausingadaptiveknotcubicbsplines
AT chappellm 4dpetreconstructionofdynamicnonsmallcelllungcancer18ffmisopetdatausingadaptiveknotcubicbsplines
AT sharmar 4dpetreconstructionofdynamicnonsmallcelllungcancer18ffmisopetdatausingadaptiveknotcubicbsplines
AT higginsg 4dpetreconstructionofdynamicnonsmallcelllungcancer18ffmisopetdatausingadaptiveknotcubicbsplines
AT fenwickj 4dpetreconstructionofdynamicnonsmallcelllungcancer18ffmisopetdatausingadaptiveknotcubicbsplines