Nonlocal approximation of nonlinear diffusion equations
We show that degenerate nonlinear diffusion equations can be asymptotically obtained as a limit from a class of nonlocal partial differential equations. The nonlocal equations are obtained as gradient flows of interaction-like energies approximating the internal energy. We construct weak solutions a...
Hauptverfasser: | , , |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Springer Nature
2024
|
Zusammenfassung: | We show that degenerate nonlinear diffusion equations can be asymptotically obtained as a limit from a class of nonlocal partial differential equations. The nonlocal equations are obtained as gradient flows of interaction-like energies approximating the internal energy. We construct weak solutions as the limit of a (sub)sequence of weak measure solutions by using the Jordan-Kinderlehrer-Otto scheme from the context of 2-Wasserstein gradient flows. Our strategy allows to cover the porous medium equation, for the general slow diffusion case, extending previous results in the literature. As a byproduct of our analysis, we provide a qualitative particle approximation. |
---|