Haptic sequential Monte Carlo localization for quadrupedal locomotion in vision-denied scenarios
Continuous robot operation in extreme scenarios such as underground mines or sewers is difficult because exteroceptive sensors may fail due to fog, darkness, dirt or malfunction. So as to enable autonomous navigation in these kinds of situations, we have developed a type of proprioceptive localizati...
Main Authors: | Buchanan, R, Camurri, M, Fallon, M |
---|---|
Format: | Conference item |
Sprog: | English |
Udgivet: |
IEEE
2021
|
Lignende værker
-
Unsupervised learning of terrain representations for haptic Monte Carlo localization
af: Łysakowski, M, et al.
Udgivet: (2022) -
Navigating by touch: haptic Monte Carlo localization via geometric sensing and terrain classification
af: Buchanan, R, et al.
Udgivet: (2021) -
Tail use in bioinspired quadrupedal locomotion
af: Briggs, Randall (Randall Miller)
Udgivet: (2012) -
Real-time trajectory adaptation for quadrupedal locomotion using deep reinforcement learning
af: Gangapurwala, S, et al.
Udgivet: (2021) -
Receding-horizon motion planning of quadrupedal robot locomotion
af: Melon, OA
Udgivet: (2022)