Haptic sequential Monte Carlo localization for quadrupedal locomotion in vision-denied scenarios
Continuous robot operation in extreme scenarios such as underground mines or sewers is difficult because exteroceptive sensors may fail due to fog, darkness, dirt or malfunction. So as to enable autonomous navigation in these kinds of situations, we have developed a type of proprioceptive localizati...
Үндсэн зохиолчид: | Buchanan, R, Camurri, M, Fallon, M |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
IEEE
2021
|
Ижил төстэй зүйлс
-
Unsupervised learning of terrain representations for haptic Monte Carlo localization
-н: Łysakowski, M, зэрэг
Хэвлэсэн: (2022) -
Navigating by touch: haptic Monte Carlo localization via geometric sensing and terrain classification
-н: Buchanan, R, зэрэг
Хэвлэсэн: (2021) -
Tail use in bioinspired quadrupedal locomotion
-н: Briggs, Randall (Randall Miller)
Хэвлэсэн: (2012) -
Real-time trajectory adaptation for quadrupedal locomotion using deep reinforcement learning
-н: Gangapurwala, S, зэрэг
Хэвлэсэн: (2021) -
Receding-horizon motion planning of quadrupedal robot locomotion
-н: Melon, OA
Хэвлэсэн: (2022)