Semantic-aware auto-encoders for self-supervised representation learning
The resurgence of unsupervised learning can be attributed to the remarkable progress of self-supervised learning, which includes generative $(\mathcal{G})$ and discriminative $(\mathcal{D})$ models. In computer vision, the mainstream self-supervised learning algorithms are $\mathcal{D}$ models. Howe...
Huvudupphovsmän: | Wang, G, Tang, Y, Lin, L, Torr, PHS |
---|---|
Materialtyp: | Conference item |
Språk: | English |
Publicerad: |
IEEE
2022
|
Liknande verk
-
Solving inefficiency of self-supervised representation learning
av: Wang, G, et al.
Publicerad: (2022) -
Disentangled variational auto-encoder for semi-supervised learning
av: Li, Yang, et al.
Publicerad: (2021) -
Self-supervised video hashing with hierarchical binary auto-encoder
av: Song, Jingkuan, et al.
Publicerad: (2020) -
Adversarial masking for self-supervised learning
av: Shi, Y, et al.
Publicerad: (2022) -
Representation learning with efficient extreme learning machine auto-encoders
av: Zhang, Guanghao
Publicerad: (2021)