Semantic-aware auto-encoders for self-supervised representation learning

The resurgence of unsupervised learning can be attributed to the remarkable progress of self-supervised learning, which includes generative $(\mathcal{G})$ and discriminative $(\mathcal{D})$ models. In computer vision, the mainstream self-supervised learning algorithms are $\mathcal{D}$ models. Howe...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Wang, G, Tang, Y, Lin, L, Torr, PHS
Materialtyp: Conference item
Språk:English
Publicerad: IEEE 2022

Liknande verk