A high order solver for signature kernels

Signature kernels are at the core of several machine learning algorithms for analysing multivariate time series. The kernel of two bounded variation paths (such as piecewise linear interpolations of time series data) is typically computed by solving a Goursat problem for a hyperbolic partial differe...

Full description

Bibliographic Details
Main Authors: Lemercier, M, Lyons, T
Format: Internet publication
Language:English
Published: 2024
_version_ 1811139631218950144
author Lemercier, M
Lyons, T
author_facet Lemercier, M
Lyons, T
author_sort Lemercier, M
collection OXFORD
description Signature kernels are at the core of several machine learning algorithms for analysing multivariate time series. The kernel of two bounded variation paths (such as piecewise linear interpolations of time series data) is typically computed by solving a Goursat problem for a hyperbolic partial differential equation (PDE) in two independent time variables. However, this approach becomes considerably less practical for highly oscillatory input paths, as they have to be resolved at a fine enough scale to accurately recover their signature kernel, resulting in significant time and memory complexities. To mitigate this issue, we first show that the signature kernel of a broader class of paths, known as smooth rough paths, also satisfies a PDE, albeit in the form of a system of coupled equations.We then use this result to introduce new algorithms for the numerical approximation of signature kernels. As bounded variation paths (and more generally geometric p-rough paths) can be approximated by piecewise smooth rough paths, one can replace the PDE with rapidly varying coefficients in the original Goursat problem by an explicit system of coupled equations with piecewise constant coefficients derived from the first few iterated integrals of the original input paths. While this approach requires solving more equations, they do not require looking back at the complex and fine structure of the initial paths, which significantly reduces the computational complexity associated with the analysis of highly oscillatory time series.
first_indexed 2024-09-25T04:09:09Z
format Internet publication
id oxford-uuid:924f1e49-7953-4518-8f2b-6f5ed8a6a230
institution University of Oxford
language English
last_indexed 2024-09-25T04:09:09Z
publishDate 2024
record_format dspace
spelling oxford-uuid:924f1e49-7953-4518-8f2b-6f5ed8a6a2302024-06-12T13:22:07ZA high order solver for signature kernelsInternet publicationhttp://purl.org/coar/resource_type/c_7ad9uuid:924f1e49-7953-4518-8f2b-6f5ed8a6a230EnglishSymplectic Elements2024Lemercier, MLyons, TSignature kernels are at the core of several machine learning algorithms for analysing multivariate time series. The kernel of two bounded variation paths (such as piecewise linear interpolations of time series data) is typically computed by solving a Goursat problem for a hyperbolic partial differential equation (PDE) in two independent time variables. However, this approach becomes considerably less practical for highly oscillatory input paths, as they have to be resolved at a fine enough scale to accurately recover their signature kernel, resulting in significant time and memory complexities. To mitigate this issue, we first show that the signature kernel of a broader class of paths, known as smooth rough paths, also satisfies a PDE, albeit in the form of a system of coupled equations.We then use this result to introduce new algorithms for the numerical approximation of signature kernels. As bounded variation paths (and more generally geometric p-rough paths) can be approximated by piecewise smooth rough paths, one can replace the PDE with rapidly varying coefficients in the original Goursat problem by an explicit system of coupled equations with piecewise constant coefficients derived from the first few iterated integrals of the original input paths. While this approach requires solving more equations, they do not require looking back at the complex and fine structure of the initial paths, which significantly reduces the computational complexity associated with the analysis of highly oscillatory time series.
spellingShingle Lemercier, M
Lyons, T
A high order solver for signature kernels
title A high order solver for signature kernels
title_full A high order solver for signature kernels
title_fullStr A high order solver for signature kernels
title_full_unstemmed A high order solver for signature kernels
title_short A high order solver for signature kernels
title_sort high order solver for signature kernels
work_keys_str_mv AT lemercierm ahighordersolverforsignaturekernels
AT lyonst ahighordersolverforsignaturekernels
AT lemercierm highordersolverforsignaturekernels
AT lyonst highordersolverforsignaturekernels