Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation.

Integrins are large membrane-spanning receptors fundamental to cell adhesion and migration. Integrin adhesiveness for the extracellular matrix is activated by the cytoskeletal protein talin via direct binding of its phosphotyrosine-binding-like F3 domain to the cytoplasmic tail of the beta integrin...

Full description

Bibliographic Details
Main Authors: Anthis, N, Haling, JR, Oxley, C, Memo, M, Wegener, K, Lim, C, Ginsberg, M, Campbell, I
Format: Journal article
Language:English
Published: 2009
_version_ 1797082370912813056
author Anthis, N
Haling, JR
Oxley, C
Memo, M
Wegener, K
Lim, C
Ginsberg, M
Campbell, I
author_facet Anthis, N
Haling, JR
Oxley, C
Memo, M
Wegener, K
Lim, C
Ginsberg, M
Campbell, I
author_sort Anthis, N
collection OXFORD
description Integrins are large membrane-spanning receptors fundamental to cell adhesion and migration. Integrin adhesiveness for the extracellular matrix is activated by the cytoskeletal protein talin via direct binding of its phosphotyrosine-binding-like F3 domain to the cytoplasmic tail of the beta integrin subunit. The phosphotyrosine-binding domain of the signaling protein Dok1, on the other hand, has an inactivating effect on integrins, a phenomenon that is modulated by integrin tyrosine phosphorylation. Using full-length tyrosine-phosphorylated (15)N-labeled beta3, beta1A, and beta7 integrin tails and an NMR-based protein-protein interaction assay, we show that talin1 binds to the NPXY motif and the membrane-proximal portion of beta3, beta1A, and beta7 tails, and that the affinity of this interaction is decreased by integrin tyrosine phosphorylation. Dok1 only interacts weakly with unphosphorylated tails, but its affinity is greatly increased by integrin tyrosine phosphorylation. The Dok1 interaction remains restricted to the integrin NPXY region, thus phosphorylation inhibits integrin activation by increasing the affinity of beta integrin tails for a talin competitor that does not form activating membrane-proximal interactions with the integrin. Key residues governing these specificities were identified by detailed structural analysis, and talin1 was engineered to bind preferentially to phosphorylated integrins by introducing the mutation D372R. As predicted, this mutation affects talin1 localization in live cells in an integrin phosphorylation-specific manner. Together, these results indicate that tyrosine phosphorylation is a common mechanism for regulating integrin activation, despite subtle differences in how these integrins interact with their binding proteins.
first_indexed 2024-03-07T01:27:11Z
format Journal article
id oxford-uuid:925f061f-915e-448b-a269-c2a4097deef1
institution University of Oxford
language English
last_indexed 2024-03-07T01:27:11Z
publishDate 2009
record_format dspace
spelling oxford-uuid:925f061f-915e-448b-a269-c2a4097deef12022-03-26T23:25:03ZBeta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:925f061f-915e-448b-a269-c2a4097deef1EnglishSymplectic Elements at Oxford2009Anthis, NHaling, JROxley, CMemo, MWegener, KLim, CGinsberg, MCampbell, IIntegrins are large membrane-spanning receptors fundamental to cell adhesion and migration. Integrin adhesiveness for the extracellular matrix is activated by the cytoskeletal protein talin via direct binding of its phosphotyrosine-binding-like F3 domain to the cytoplasmic tail of the beta integrin subunit. The phosphotyrosine-binding domain of the signaling protein Dok1, on the other hand, has an inactivating effect on integrins, a phenomenon that is modulated by integrin tyrosine phosphorylation. Using full-length tyrosine-phosphorylated (15)N-labeled beta3, beta1A, and beta7 integrin tails and an NMR-based protein-protein interaction assay, we show that talin1 binds to the NPXY motif and the membrane-proximal portion of beta3, beta1A, and beta7 tails, and that the affinity of this interaction is decreased by integrin tyrosine phosphorylation. Dok1 only interacts weakly with unphosphorylated tails, but its affinity is greatly increased by integrin tyrosine phosphorylation. The Dok1 interaction remains restricted to the integrin NPXY region, thus phosphorylation inhibits integrin activation by increasing the affinity of beta integrin tails for a talin competitor that does not form activating membrane-proximal interactions with the integrin. Key residues governing these specificities were identified by detailed structural analysis, and talin1 was engineered to bind preferentially to phosphorylated integrins by introducing the mutation D372R. As predicted, this mutation affects talin1 localization in live cells in an integrin phosphorylation-specific manner. Together, these results indicate that tyrosine phosphorylation is a common mechanism for regulating integrin activation, despite subtle differences in how these integrins interact with their binding proteins.
spellingShingle Anthis, N
Haling, JR
Oxley, C
Memo, M
Wegener, K
Lim, C
Ginsberg, M
Campbell, I
Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation.
title Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation.
title_full Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation.
title_fullStr Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation.
title_full_unstemmed Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation.
title_short Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation.
title_sort beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin induced integrin activation
work_keys_str_mv AT anthisn betaintegrintyrosinephosphorylationisaconservedmechanismforregulatingtalininducedintegrinactivation
AT halingjr betaintegrintyrosinephosphorylationisaconservedmechanismforregulatingtalininducedintegrinactivation
AT oxleyc betaintegrintyrosinephosphorylationisaconservedmechanismforregulatingtalininducedintegrinactivation
AT memom betaintegrintyrosinephosphorylationisaconservedmechanismforregulatingtalininducedintegrinactivation
AT wegenerk betaintegrintyrosinephosphorylationisaconservedmechanismforregulatingtalininducedintegrinactivation
AT limc betaintegrintyrosinephosphorylationisaconservedmechanismforregulatingtalininducedintegrinactivation
AT ginsbergm betaintegrintyrosinephosphorylationisaconservedmechanismforregulatingtalininducedintegrinactivation
AT campbelli betaintegrintyrosinephosphorylationisaconservedmechanismforregulatingtalininducedintegrinactivation