Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle

Beneath mid-ocean ridges, magma is thought to rise through a network of high porosity channels that form by reactive flow. Partial mantle melts travel rapidly through these channels to the surface, and retain the geochemical signature of their source rock. Global analyses of mid-ocean ridge lavas in...

Full description

Bibliographic Details
Main Authors: Weatherley, S, Katz, R
Format: Journal article
Language:English
Published: 2012
_version_ 1797082404745117696
author Weatherley, S
Katz, R
author_facet Weatherley, S
Katz, R
author_sort Weatherley, S
collection OXFORD
description Beneath mid-ocean ridges, magma is thought to rise through a network of high porosity channels that form by reactive flow. Partial mantle melts travel rapidly through these channels to the surface, and retain the geochemical signature of their source rock. Global analyses of mid-ocean ridge lavas indicates that the mantle is chemically heterogeneous, but the consequences of this heterogeneity for reactive porous flow remain unclear. Using numerical models of coupled magma/mantle dynamics, we investigate the relationships between mantle heterogeneity, melting, and magmatic channelization. The models are based on conservation mass, momentum, energy, and composition in a system with two phases and two thermodynamic components in local thermodynamic equilibrium. One of these components is more fusible than the other. In this context, we find that heterogeneities enriched in the more fusible component can nucleate magmatic channels. To understand this result we consider an expression for the melting rate derived from the conservation principles. This expression quantifies the relationship of decompression, reactive flow, and thermal diffusion to the melting rate. With it, we assess their relative importance in the ambient mantle, channels, and enriched heterogeneities. In our models, heat diffuses into fertile channels and powers melting, in combination with reactive flow. These results suggest that thermal diffusion influences the dynamics of magmatic channelization. Copyright 2012 by the American Geophysical Union.
first_indexed 2024-03-07T01:27:42Z
format Journal article
id oxford-uuid:9286d851-d2eb-454e-8715-e222cd138e34
institution University of Oxford
language English
last_indexed 2024-03-07T01:27:42Z
publishDate 2012
record_format dspace
spelling oxford-uuid:9286d851-d2eb-454e-8715-e222cd138e342022-03-26T23:26:09ZMelting and channelized magmatic flow in chemically heterogeneous, upwelling mantleJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:9286d851-d2eb-454e-8715-e222cd138e34EnglishSymplectic Elements at Oxford2012Weatherley, SKatz, RBeneath mid-ocean ridges, magma is thought to rise through a network of high porosity channels that form by reactive flow. Partial mantle melts travel rapidly through these channels to the surface, and retain the geochemical signature of their source rock. Global analyses of mid-ocean ridge lavas indicates that the mantle is chemically heterogeneous, but the consequences of this heterogeneity for reactive porous flow remain unclear. Using numerical models of coupled magma/mantle dynamics, we investigate the relationships between mantle heterogeneity, melting, and magmatic channelization. The models are based on conservation mass, momentum, energy, and composition in a system with two phases and two thermodynamic components in local thermodynamic equilibrium. One of these components is more fusible than the other. In this context, we find that heterogeneities enriched in the more fusible component can nucleate magmatic channels. To understand this result we consider an expression for the melting rate derived from the conservation principles. This expression quantifies the relationship of decompression, reactive flow, and thermal diffusion to the melting rate. With it, we assess their relative importance in the ambient mantle, channels, and enriched heterogeneities. In our models, heat diffuses into fertile channels and powers melting, in combination with reactive flow. These results suggest that thermal diffusion influences the dynamics of magmatic channelization. Copyright 2012 by the American Geophysical Union.
spellingShingle Weatherley, S
Katz, R
Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle
title Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle
title_full Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle
title_fullStr Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle
title_full_unstemmed Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle
title_short Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle
title_sort melting and channelized magmatic flow in chemically heterogeneous upwelling mantle
work_keys_str_mv AT weatherleys meltingandchannelizedmagmaticflowinchemicallyheterogeneousupwellingmantle
AT katzr meltingandchannelizedmagmaticflowinchemicallyheterogeneousupwellingmantle