Heterotic models from vector bundles on toric Calabi-Yau manifolds

We systematically approach the construction of heterotic E 8 × E 8Calabi-Yau models, based on compact Calabi-Yau three-folds arising from toric geometry and vector bundles on these manifolds. We focus on a simple class of 101 such three-folds with smooth ambient spaces, on which we perform an exhaus...

Description complète

Détails bibliographiques
Auteurs principaux: He, Y, Lee, S, Lukas, A
Format: Journal article
Langue:English
Publié: 2010
Description
Résumé:We systematically approach the construction of heterotic E 8 × E 8Calabi-Yau models, based on compact Calabi-Yau three-folds arising from toric geometry and vector bundles on these manifolds. We focus on a simple class of 101 such three-folds with smooth ambient spaces, on which we perform an exhaustive scan and find all positive monad bundles with SU(N), N = 3, 4, 5 structure groups, subject to the heterotic anomaly cancellation constraint. We find that anomaly-free positive monads exist on only 11 of these toric three-folds with a total number of bundles of about 2000. Only 21 of these models, all of them on three-folds realizable as hypersurfaces in products of projective spaces, allow for three families of quarks and leptons. We also perform a preliminary scan over the much larger class of semi-positive monads which leads to about 44000 bundles with 280 of them satisfying the three-family constraint. These 280 models provide a starting point for heterotic model building based on toric three-folds. © SISSA 2010.